The infinitely renormalized field in the scalar field model

Eugene Hamilton

Department of Mathematics, Vanderbilt University, Nashville, Tennessee
(Received 10 January 1975; revised manuscript received 18 March 1975)

The system consisting of a relativistic scalar boson field interacting with a single spinless nucleon with
kinetic energy taken to be independent of momentum is studied in d space dimensions. The interaction
Hamiltonian is taken to be H(f) = f, "d)f(x)xp"(x)w(x) dx, where fis a momentum cutoff. The physical
Hilbert space K corresponding to the case f=1 in d space dimensions is discussed. The time smoothed
nucleon annihilation operator is constructed as a closable operator on K. First order estimates are
established for Y( k) in terms of the local (in momentum space) number operators on K for the case d=3.
It is shown that the union of the ranges of the adjoints y*(k) is dense in K. The one particle Hamiltonian

is related to the nucleon creation operator on K .

INTRODUCTION

The objective of this paper is to study the phenomenon
of infinite field strength renormalization in a simple
model. We investigate the infinitely renormalized
nucleon field operator in the scalar field model. We re-
strict our attention to the action of this operator on the
one nucleon physical Hilbert space, where the phenome-
non of principle interest already occurs; the range of
the operator restricted to this subspace is contained in
the zero nucleon space.

Much has been written dealing with the mathematical
aspects of this model.'~® The work closest to this paper
is Ref. 2. In that paper the physical Hilbert space is
constructed via the Wightman functions for the case of
three space dimensions. We obtain more information
than is obtained in Ref, 2 in that we get estimates for
the time-smoothed nucleon field operator in terms of the
local number operator (in momentum space) for three
space dimensions. We also construct the nucleon field
operator for d space dimensions, where 4> 3. For this
case we must use more regular test functions for time
smoothing than those in §(IR'), and we do not obtain
estimates on the operator.

An interesting question is to determine whether the
infinitely renormalized nucleon operator is unbounded.
For Fermion fields, equal-time anticommutation rela-
tions imply boundedness of the spatially smoothed field
operators. In this model, however, there are no sharp-
time nucleon field operators (after cutoffs are removed);
there are only time-smoothed field operators. Hence
there are no equal-time anticommutation relations, and
so the boundedness is in question. In fact, the indica-
tions are that the field operators are unbounded. We
feel that our techniques are a step in settling this
question.

The scalar field model may be described as follows.
Consider a system of spinless nucleons interacting with
a boson field, We will consider a Hamiltonian for which
the kinetic energy is independent of the nucleon momen-
tum. This is customarily interpreted as meaning that
the nucleon mass is “very large” relative to the nucleon
momentum.

The total Hamiltonian of the system in the presence
of 2 momentum cutoff fis H,=H,+ H,(f), where
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Hy=M | P o(a)dx+ [ alR)* nikdale) dK,
R R
H(p=Q/V2)eny [ [ L)/ ut/ ()]

% [exp(ik *x)alk)* + exp(— ik * x)a(k) [ (xV* Y(x)dx dk,
we)=E+m®%, m, M>0

and #(x) and a(k) are the annihilation operators for the
nucleons and bosons respectively. M is the nucleon
mass and m is the boson mass. Hf is an operator on
]nucleons@’]mesons which commutes with the nucleon num-
ber operator, so that Hf leaves the number of nucleons
invariant. Hence, in studying H, we can consider a
subspace in which a fixed number of nucleons are
present. H, also commutes with the nucleon position
operator. This means we can reduce H, with respect

to position; that is, we can consider the nucleons as
being located at fixed points in IR?. To treat nuclear an-
nihilation and creation operators, we need to consider
states with different numbers of nucleons, but it turns
out that for our purposes it suffices to restrict attention
to the subspace with zero and one nucleon, and the one
nucleon may be assumed located at the origin. The
Hamiltonian H, restricted to the no nucleon states is

Hy=[  aky uk)alk)de
R

while for the one nucleon states under consideration it
is
Hy=M+ [ a®y*plk)alk)dk +(1/V2)(2n)"
R
x [ LAY B2 ale)* + alk)] dk.
r
These are operators on 7___ - we will henceforth de-
note this space simply by 7. To remove the cutoff, we
choose a sequence {fn} of smooth functions with compact
support that converges in a suitable sense to the func-
tion u(k)-'/°. Write H,=H, . For each n, We renormal-
ize the nucleon mass so thit the lower bound of H is
zero. If =2, the renormalized mass M, will go to in-

finity as » = . Thus for 4= 2 the model exhibits in-
finite mass renormalization.

Let A, denote the ground state for H,. This is a unit
eigenvector corresponding to eigenvalue zero, If d=2,
then A, converges strongly in 7 and H, converges in the
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generalized strong sense to a positive operator on 7.

If d> 2, then A converges weakly to zero. In this case,
it is necessary to construct another space K, the physi-
cal Hilbert space, with the property that the sequence
{A,} “converges” in a certain sense to a nontrivial vec-
tor in K. Then the Hamiltonian may be constructed on
K as a “limit” of the sequence H,.

Briefly, the procedure for constructing K is to de-
fine a sequence of linear functionals {w, } by w,(4)
=(AA,A) for A A = the algebra generated by

{exp(zf [gR)alk) + g(k)alk)* | dk) | g = L2 (R?)

and has compact support}.

Then w, converges to a linear functional w onA. We

let K be the space obtained from (4, w) via the Gel’fand—
Naimark—Segal construction. Thus setting kerw={A
eAlw(A*A)=0}, K is the Hilbert space completion of
A/kerw in the inner product ([A],[B])= w(B*A), where
[A]=A+kerw. H can be defined on K in a standard way.

In this paper we consider the nucleon annihilation
operator restricted to those states in which there is one
nucleon at the origin and any number of mesons. It maps
those states into ones with no nucleons and any number
of mesons. Since the Hilbert space of states of one
nucleon at the origin is one-dimensional, this restric-
tion of the nucleon annihilation operator can be regarded
as a mapping of meson states; it will be constructed as
a mapping of K into 7. In the following, when the
nucleon annihilation operator is referred to it denotes
this restriction. The construction of the nucleon an-
nihilation operator begins with the time smoothed an-
nihilation nucleon operator on 7 given by

:fdth(t) exp(itH,) exp(-itH ) for he S(RY).

This sequence of operators converges weakly to zero
on 7. To remedy this, we multiply y, by a suitable
sequence {cn} of constants tending to infinity. This pro-
cedure is called infinite field strength renormalization.
We show that the sequence {y,(k)AQ } converges strongly
in 7 for A in 3, where A is a subset of / such that
{{A]liA =B} is a dense subset of K. The limit we call
${r)[A]. ¥(r) is called the annihilation operator without
cutoffs; we show that it is a closable operator from K
to 7. We also show that the union of the ranges of y*(%)
over he S(IRY) is dense in K. Finally, we establish the
relationship between the Hamiltonian without cutoffs and
the annihilation operator without cutoffs

exp(itH)y* () = v* (h,) exp(itH,),

where £, is the translate of 2 by {. In this equation each
side is an operator from 7 to K.

I. PRELIMINARIES
A. Fock space

Before we can discuss the physics of a spinless
nucleon interacting with a boson field, we need to define
the space which is used to represent the nucleon and
bosons and the operators which describe the interaction
of these particles.

First we define the state space for the bosons. Let
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# be a complex Hilbert space. Let #°=C, A/ =HoH
® + o+ (j factors), and / = =3, ®Hi, [ is called the
Fock space over /. For every permutatlon geS,, the
symmetric group of degree », there exists a umque
unitary operator U(0) defined by the equation

U(0)(x, @ %,@ co°® x, ) =x ®ooo Ry

®x
L1 o=l(z) o (n)

for x,, . . .,x,€/. A tensor uc//" is called symmetric

if U(ou=u for all o€ S,. Define
P = L n=0,
A/nt) 22 Ulo),

°c S,

n> 0.

Then PY: //(m -oatey 7n the space of all symmetric

n tensors; moreover, P‘"’ is an orthogonal projection.
Put 7=3%_ 7"and Pg=37,P{) . Then Py is the orthog-
onal projection of / onto f. 7 is called the symmetric
Fock space over //. The state space used to describe the
bosons is the Fock space / over A/ = L2(R?). The sub-
space 7" is the state space for a system of xn bosons.
Since 7 is the direct sum of {7 |#=0,1,2,-+- } we can
regard an element =37 4., ¢ €77, of 7 as a state that
contains » bosons with probability 11¢,1%/11¢1?. We can
now define an operator which creates bosons, i.e.,
takes a pure state y,< 7" with » bosons to a state in 7™,
Let [/ denote the subspace of algebraic symmetric ten-
sors over /. Then |/ is dense in 7. For xc/ and ue [/
N #n, define Cu=Vn+1Pg(x® u). C, extends linearly to
V. Then C: /= I/ and /N jn—|/N 7™ C_is a closable
operator.! We denote its closure by C_also, and we de-
note its adjoint by A_. C, and A are called respectively
the creation and annihilation operators for the state «.
Let R_be the closure of 1/ ﬁ)(Ax+ C,). R_is called the
boson field operator. We will use R, later on to express
the potential of the interaction between a nucleon and a
system of bosons. R, is related to the usual field opera-
tors, ¢ and 7, as follows. If /= L*(IR?), then

B ut/2 a2 =fmd [&(x, 0)h(x) + wlx, 0)glx)]dx

for k and g real-valued functions in C7,(R?). We now
state several results concerning the operators A , C_,
and R_which will be useful later on.

Theorem 1.1: R_is self-adjoint.

Theorem 1.2: For any x and y in //, exp(iR ) leaves
invariant J(R,) and exp(iR, )R, - R, exp(zR )=TIm(x, y)
x exp(iR,) on O(R ).

Theovem 1.3: (Weyl relations) For any x and vy in #/,
exp(iR ,,) = exp(iR,) exp[ - i Im(x,v)/2].

Theorem 1.4: If u is in |/, then exp(iR Ju = exp(-llxn?/
4)exp(iC,) exp(iA Ju.

Theovem 1.5: The map x —exp({R,) is strongly
continuous on /.

Let A be the zero rank tensor 1= €. A is called the
vacuum state in 7.

Theovem 1.6: Let K, be a closed subspace of //. Let
K, =K%. Let #(K) denote the symmetric Fock space
over K. There is a unique unitary transformation L
from 7 (K,)® 7(K,) onto 7 (#/) such that
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L(exp(GRV)A))® (exp(iR{P)A,) = exp(iR . )A

for all xe K, and y< K,. Here A, is the vacuum state in
F(K;) and R’ acts in F(K;). L satisfies

L{exp(iR{")® L™ =exp(iR,), xc K,
and

L(I® exp(iR{P)L™ =exp(iR,), y< K,.

Theovem 1.7: The linear span of {exp(iR)Alxc/} is
dense in 7.

These theorems may be found or easily deduced from
results in Ref. 1.

As we mentioned above, the boson field operator is
used to express the potential energy. We need to define
another operator representing kinetic energy.

Definition 1. 8: Let U be a unitary operator on /. De-
fine T(U): 7 =Fby T =IsU® (U U)S(UdUS V)
@ v

T'(U) is clearly a unitary operator. If A is a self-ad-
joint operator on #, then, for all e R, exp(itA) is a
unitary operator on // which gives rise to the unitary
operator I'(exp(it4)) on 7.

Theorvem 1.9: T(exp(itd)) is a strongly continuous
one-parameter group in /.

Proof: Strong continuity on [/ is clear, and this im-
plies strong continuity on the whole space.

Hence, by Stone’s theorem, I'(exp(itA)) has a unique
infinitesimal generator dT'(4), a self-adjoint operator on
7 such that T(exp(itA))=exp(itdT(4)).

Definition 1.10: N=dT(I). N is called the number
operator.

Theovem 1.11: For all xe#, R (N+I)"'/? is a bounded
operator.

If A is the kinetic energy operator for a single boson,
then dT(A4) represents the kinetic energy of the system
of bosons. We shall need the following results concerning
L'(U), dT(A), and R_:

Theovem 1.12: If x e/ and U is a unitary operator on
#, then

T(URIT(UY = Ry,.
Proof: See Ref. 1,

Theovem 1.13: Let A be a self-adjoint operator on /4
and let xe,. If pycDW@T(A)ND(N?)), then ye /)
EDdT(A)exp(in) and

3

dT(A) exp(iR )b = exp(GR WdT(A)p + 3(Ax,x)9 + R, O}

For a proof, see Ref. 9.

B. Operators with cutoffs
1. The one nucleon Hamiltonian

We are now in a position to define an operator that
represents the boson kinetic energy.

Definition 1.14: Let m be a positive constant. Let u
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be the function on IR? defined by u(k)= (m?+ | k?)*/2 for

all k< IR? and let/ﬂu be the operator of multiplication by
4 on R?. Finally, let Hy=dT(},). H, is called the free

Hamiltonian.

H, is the operator on # which represents the boson
kinetic energy. m is equal to the mass of a single boson.
H, also represents the total Hamiltonian for a system of
bosons, since, for a system of bosons, there is no
interaction and hence no potential energy term in the
Hamiltonian. Let us now define the Hamiltonian for the
system of bosons interacting with a nucleon. The Hilbert
space for the nucleon is L2(IR?), and hence the Hilbert
space for the nucleon and bosons is L%(IR?)® 7. Note
that this space can be identified in a natural way with the
space L?(IR%; 7). We make use of this identification in
the following definition.

Definition 1.15: Let w e L%(R%). For all xc R?, define
the function w, e L*(R?) by w (k)= w(k) exp(ik - x) for all
kcR®, Let uc L*(R?%7) be such that u(x)e) ,,,,"/? for
all x ¢ R?, It is clear that the set of such « is dense in
L*(R?; 7). Define V u by Vw(u)(x)szxu(x) for all xc Re,

Let f, be a sequence of nonnegative C~ functions on
IR?Y with compact support such that

(1) f{=x)=f,x) for all xcR? and for all n,
(2) f,is a monotonically increasing sequence, and
(3) f,(x)=1for x| <nand f,(x)=0for |x| >n+1.

Let w,=(2m)f,/u'/%, where u(k)=(m®+£*)*'/? for all
kR and m is a positive constant. Let V.=V, . We

n
call vV, the potential corresponding to the cutoff function

Jar

In this paper, we are studying the scalar field model.
The principal simplifying assumption in this model is
that the nucleon has infinite mass. This implies that the
nucleon does not recoil, and hence the nucleon kinetic
energy is zero. Therefore, the Hamiltonian consists of
the sum of the boson kinetic energy H, and the potential
energy V . However, the inf of the spectrum of H,+ V,_
is —3(w,, #'w,). It is convenient to add a constant term
to the Hamiltonian so as to make the inf of the spectrum
0. This is justifiable, since the potential may be altered
by a constant without changing the physics. So we set
H, =H,+V, +3(w,, «'w,). (Note that here we are writing
H, instead of I® H,. We shall continue this convention. )
H, is the one nucleon Hamiltonian corresponding to the
cutoff f,. It is the same as the Hamiltonian described in
Ref. 10 except that we are considering only one nucleon
where Schweber is considering a whole field of nucleons
and we are representing the nucleon with configuration
space rather than momentum space. (We are represent-
ing the bosons, however, with momentum space, as
Schweber does. )

?

Now if # e L*(R%; /) and is in the domain of H,, then
(Ha)(x) = Houlx) + R, 100) + 5 (w0, 170w Ju ().
Hence, setting H,(x)=H,+ R, , +3(w,, u'w,), we have

H,=[ aH (x)dx. H,(x) is an operator on 7 called the
reduced H_ at x.
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2. The nucleon annihilation operator

In analogy with the boson creation operator, we can
define the nucleon creation operator.

Definition 1.16: Let he L*(IR?) and u c /. We define
the creation operator ¢*(#) applied to u by ¢*(Ru=hs u.
Thus y*(h): 7 = L¥RY)® 7.

Now let us calculate the adjoint, which we denote by
d(h). Let hy € L3(R?) and # and » < /. Then

@R, ® u,v)= (1, ® u, v* (W)
=(®u,h®v)
=y, h)u,v)
= ((hy, 1)

Hence $(h), & u= (k,h)Ju. What we are interested in is
the pointwise annihilation operator.

Definition 1.17: Let x ¢ R®. The annihilation operator
at x, ¥(x), is a map from L%(R¥)® 7 — 7 defined by $(x)k
@u=h(xu for he C*(R) N LR and u e /.

W, v).

Note that, formally, i(x) is a special case of (k) re-
sulting from letting % equal the §-function at x. Also, we
we have the relationship (k) = [pe {x)y(x) dx, so that we
can study the annihilation operator ¥(k) (also called the
spatially smoothed annihilation operator) by studying
the pointwise annihilation operator (x).

il. THE TIME SMOOTHED NUCLEON ANNIHILATION
OPERATOR WITHOUT CUTOFFS IN THREE
DIMENSIONS

A. The physical Hilbert space

In the preceding section, we have considered an
interaction with a cutoff; now we remove the cutoff. If
d>2, i.e., if we are in more than two spatial dimen-
sions, then it is necessary to move out of Fock space
into another space, called the physical Hilbert space.
Put w={(2m)¢/p'/?, where, as before, i is the function

(k)— (m?+ | k1 ?)'/2, Then, recalling that H =H,+V,
+3(w,, utw,), we would expect formally that the limit
of the sequence {H,} should be given by H=H,+V,_
+4(w, u~tw). However, this last expression does not
make sense for two reasons. w ¢ L*(R®) (so that V, does
not make sense) and (w, ulw) =<,

The first thing we do to construct the limiting
Hamiltonian is to simplify the problem by looking at
the reduced Hamiltonian H (x). For each xc IR?, we can
construct a space /< and an operator H(x) that is in
some sense a limit of the sequence {H (x)}. The spaces
K, can all be identified in a natural way, i.e., there
exists a canonical unitary operator U, for each x such
that K, = U,K,U:!. Then we can construct the limiting
Hamiltonian H acting on L2(IR%)® K by the formula H

= [p¢ UF'H(x)U,dx. Since the problem is analogous at
dlfferent points x, we confine our attention to the con-
struction of the limiting Hamiltonian for H,{0), which we
will henceforth call #,. We will also call the limiting
reduced Hamiltonian H and put K =K.

K is constructed by making sense of the limit of the
cutoff ground states. Recall that the inf of the spectrum
of H, is 0. There is an eigenvector A of multiplicity
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one for 0, and A, is called the ground state for the cut-
off 7. We can fmd A, explicitly. Put g,=—4w /u. Then
puttmg A=/, and x=g,, we have by Theorem I.13 that
H, =exp(iR, )H exp(-iR, ). A straightforward calcula-
tlon shows fllat HA=0 and hence that exp(iR,, )H,
xexp(— iR, )[exp(zR JA]=0. Thus if A _exp(zR )A, then
HA =0, IIA =1 for all %, but the sequence con'lrerges
weakly to 0. Nevertheless we shall make sense of a
limiting ground state, a unit vector in another Hilbert
space which is a “limit” of the sequence {A }.

The motivation for the method we will use for making
sense of the limit comes from the fact that the Fock
space is determined by the action of a certain set of
operators on the ground state A ; the linear span of
{exp(iR A, | x c L*(RY) )} is dense 1n] (This follows from
Theorems I 7 and 1.3.)

We will construct the limit of the sequence {A } by
regarding A" as a linear functional on a certain space
for each n. Let S be a bounded open subset of R* and
let A(S)= the von Neumann algebra on 7 generated by
{exp(zR ige L*(IR?) and suppg CS}. Let A denote the
norm closure of the union of//(S where S ranges over
all bounded open sets in IR¢, Defme the linear functional
w, onA by w (A)=(AA ,A)). Each w, is continuous re-
lative to the norm topology on 4. A calculation shows
that {wn} converges pointwise to a continuous linear func-
tional w on A with norm 1. Applying the Gel’fand—
Naimark—Segal (GNS) construction to the pair (4, w),
we obtain a Hilbert space K in which A/kerw is dense.
We call K the physical Hilbert space. We can now define
the limiting Hamiltonian H on K. We do this by defining
exp(itH) and then applying Stone’s Theorem. Let A
cA(S). Let g=—jw/u and put »=gxs and 7, =g, —

Since H =exp(iR, JH,exp(- iR, ), we have by the funCa
tional calculus that exp(itH, )_exp(zR )exp(th )
< exp(- iR, ). Hence

)
= exp(iR, ) exp(iR,) explitldT (uxs) + dT(ux o))}
xexp(~iR, )exp(-iR,)

exp(ilH )= exp(z’RT"ﬂ) exp(itH,) exp(~ iR, ,,

(where S¢ denotes the complement of S)
=exp(iR, n) exp(- R ) explitdT(ux )]
x explit dT(ux )] exp(~ iR, ) exp(~iR,)
=exp(iR,) explit dT (kX s)]exp (- iR) exp(z'an)
xexplit dT(ux ge)] exp(- iR,n).
Therefore,
exp(itH JAA,
=exp(iR,) explit dT(ux s)] exp(- iR,) exp(iR, )
xexplitdT(ux )| exp(~ iR, JAN,
=exp(iR )itdT(ux¢c)Jexp(—iR,)A exp(iR,n)
xexplit dT(ux so)]exp(- iR, )expliR,,, )\
=exp(iR,) explitdT(ux )] exp(~iR,)A explR, )
xexp(it dT(X sc)] expliR, A
=exp(iR,) explit dT(ux s)] exp(- iR A exp(iR,) exp(iR, )
xexplit dT(ux ge)]A
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=exp(iR,) explit dT(ux g)] exp(-iR,)A exp(¢iR A
=exp(iR,) exp[it dT(ux )] exp(~ iR JAA .

Put U(t)[A]=[exp(iR,) exp[it dT'(ux ¢)] exp(~ iR,)A]. Then
U(#) maps [A(S)] onto [A(S)] and preserves the K norm.
It is clear that if A< A(S)NA(T), where § and T are
bounded open sets in IR?, then U(¢)[A] defined in the
above manner is the same whether A is regarded as an
element of A(S) or of A(T). Thus we have defined U(z)

in a consistent manner as a map from the union {/ of
[4(S)] over bounded open sets onto {/. Since {/ is dense
in [A4] relative to the operator norm, {/ is dense in [A]
relative to the A norm. Since (4] is dense in K, {/ is
dense in K. Thus U(f) extends to a unitary map from K
onto K. It is easy to show that U(¢) is strongly continuous
in ¢. Hence U(¢) is a strongly continuous unitary group,
and by Stone’s theorem, there exists a self-adjoint
operator H on X such that U(t)=exp(itH). This H we call
the one nucleon Hamiltonian without cutoffs.

B. Existence of the annihilation operator without
cutoffs

We now proceed to construct the nucleon annihilation
operator without cutoffs. As with the Hamiltonian, we
shall construct the annihilation operator reduced at the
origin, since the same procedure serves to construct
the annihilation operator reduced at x for all x< R® and
the full annihilation operator can be constructed from
the reduced ones. For xc R?, let ¢, denote the point-
wise evaluation functional on L*(IRY), i.e., if ke L*(R?)
N C*(R?), then e =h(x). Then recalling Definition I.17,
we have ¢(x)=e ® I, where I is the identity operator on
7. Hence the annihilation operator reduced at x is sim-~-
ply the identity operator on 7. We see that the procedure
used to define exp(itH) will not work here, for if AcA,
the sequence JAA  is equal to AA , which converges
weakly to zero. If we consider the spatially smoothed
annihilation operator ¥(%), we run into the same problem
that is, ¥(k)AA converges weakly to zero for A eA.

The way we get around this difficulty is by time
smoothing. Up to now, all the operators considered have
been at the fixed time {=0. From quantum mechanics,
we know that an observable V(¢) evolves in time accord-
ing to the formula

V(t) = exp(itH) V(D) exp{- itH),

where H is the Hamiltonian. In this case, the annihila-~
tion operator corresponding to the cutoff f, and reduced
at the origin is an operator from the reduced one
nucleon space /, where the Hamiltonian is H_, to the
zero nucleon space 7, where the Hamiltonian is H,,.
Hence the annihilation operator at time ¢ corresponding
to the cutoff f, and reduced at the origin is exp(itH,)!
exp(- itH,) = exp(itH,) exp(~itH,). We wish to time-
smooth with a function % belonging to some suitable
space of test functions, The result is

8, (h) = [y dt(t) explitH,) exp(~ itH,),

where we are using the strong integral, If A=A(S) for
some bounded open set § in IR®, then it is easy to show
that the sequence 3§ (k)AA  converges weakly to zero.
To correct this, we multiply the operators ¥ (k) by a
suitably chosen sequence {cn} of constants that tend to
infinity.
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Put ¢, =(A,, A" =(exp(iR, )A,A)". By Theorem I.4,

(exp(iR, )A, A) '

=exp(- [Ig,II*/ 4)(eXp(iC,") exp(iA, )A,A)

=exp(- llg,|I?/4)exp(~ C, A, A)

=exp(- llg,JI?/4)(A,A)

=exp(- llg,[I?/4).
Hence, c,=exp(igi?/4). Put

b, ()= c b, (k) =c, [dt h(t) exp(etH,) exp(~ itH,).

We will determine what sort of test function space 2
should lie in, and then we will construct a “limit” of the
sequence d),,(h)- Let us first find conditions on k which
will insure that zp"(h)A" is a sequence bounded in norm:

YA =c, [ dt h(t) explitH,) exp(itH A,
=c, [ dth(t) exp(itH)A
=, V21 h(H,) exp(iR, )A
=27h(H,) exp(ngn)A,
where
n(t) = (1/V37) Sn(s)explits)ds, g,=[-i/(2nP]f/u®/?,

and £, is as defined above in Sec. 1.B.1. [We will also
use the notation

1(t) = (1/¥27) [ h(s) exp(~its) ds
and
Ry By (8) = (1/V2m) [ hy(2 = s)hy(s) ds. ]

Suppose that the restriction of ;L to the positive half-line
is the Laplace transform of a function y:

1(O)= [ vs) exp(= st ds =L¥(t) (t>0).

Then h(H,) = f: ¥(s)exp(-sH,) ds and, since H, is a
positive operator,
k(B exp(iC, JAIE< [7 | ¥(s)|llexp( sH,) exp(iC, Al ds.
Now

exp(- sH,) exp(iC, A= exp(iCexp(_sug"))A
=expl|lexp(- s u, )I1?/4]

x exp(z’Rm(_Wn,)A

so that

Il exp(— sH,) exp(iC, )AIl; = exp[ll exp(- s u, )I?/2].
After some further estimates, we find that

,l,i.r,?” exp(- sH,)exp(iC, )QIZ~1/s/? as s— 0 for d=3,

lim |l exp(- sH,)exp(iC, JQIi2 ~exp(3s®¢) ass—~0for d>3

ne o

H

and lim__ |l exp(- sH,) exp(ngn)Qll';‘ remains bounded as
s~ for d> 3, where K,(s)~K,(s) as s —a means that
lim,,, [K,(s)/K,(s)]=1. In order that the integral

fow | ¥(s)| exp(- sH)A ||Zds (1)

converge for the case d=3, it suffices to have fol [v(s)/
s'/?}ds < and [* | ¥(s)| ds <. Now suppose that
e S(RY), the space of rapidly decreasing functions on R!.

Eugene Hamilton 447



Then (a) ¥(s)/s remains bounded as s 0 and (b) s%¥(s)
remains bounded as s — . (a) and (b) follow from the
fact that

lims/ f(s) _hmﬂt and litgl sl ﬂs):ltimﬂt)
s s~ -
provided that f and f’ are Laplace transformable and
lim,_,, A(#) exists. ! Since ¥(s)/s remains bounded as s
—0 and s?¥(s) remains bounded as s — =, f’[l y(s)l/
s'/2]ds < and [" | ¥(s)| ds <. Thus, in the case d= 3,
it suffices to have ke S(RY) or, equivalently, % S(RY).

In the case d> 3, the condition % e §(RY) does not in-
sure that (R} A H2 is a bounded sequence. If, for exam-
ple, a()=]; exp(- s7) exp(—s t)ds, where 0<p< d-3,
then 2 5, and it can be shown that

lim suplly, (B A, ]I3 ==
f oo
If 7 S(R') and has compact support, then (1) con-

verges. Hence we would use as test function space the
set [ of all functions in S(R') whose Fourier transforms
have compact support. However, /) contains no non-
trivial functions with compact support. The physical
significance of this is that using /) as test function space
would not permit one to make measurements localized
in time. Since this is an undesirable restriction,; we
need a larger space of test functions.

The problem of choosing a suitable test function space
for a field theory is discussed in a paper by Jaffe.!?
The test function space should be the set of infinitely
differentiable functions /; whose Fourier transform #
satisfies
| DR( p)

|<oo

Wl = sup GA[p )1+ |p[D)n

NymMy.

for all integers n,m, and A, where D™k denotes the mth
derivative of i and G is an entire function satisfying

f In[G()]
. a1+

The condition (2) insures that the test function

space contains nontrivial functions of compact support.
Note that if we take G=1, we obtain the space §. As we
have seen, this space is not restrictive enough to insure
that the sequence 1y (k)A |IZ remain bounded. Let ¢ be
the test function space corresponding to

di < «, (2)

z"
z)—ZHEO (@n)!

cosz!/*+coshz'/?, z#0,

- 2, z2=0.

As t—~x, G(¥)~exp(VIil), so that f; {In[G()])/

1+ dt <o, I h €Y, then R(t) exp(v 7)) remains
bounded as { -+ . Hence there exists a constant M such
that | 7(¢)! < Mexp(— V17l )} for all ¢. Then

II(H,) exp(iC, JAIE < I Mexp(— VHy) exp(iC, JAI3

=M exp(llJg,|IZ/4), where J(f)=exp(- VI#I).
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Hence,

lim suplly, (R)A |15 < 20M? exp(|lJgl12/2)

e
since [lJgllZ < =,

We will construct the time smoothed annihilation
operator without cutoffs for the cases d=3 and d> 3,
using the test function spaces § and ﬂ , respectively.

Let S be a bounded open set in R?, and let F be a func-
tion in L*(R%) with support in S. Let g= -¢/(2n)*u®/?, »
=g Xs, r,=8,~7, and A= expliR;). We will show that
the sequence ¥, (R)AA_ converges in 7. By the definition
of ¥ (k) and the fact that

exp(-itH )= exp(iRg") exp(— itH,) exp(- iRg"),
we have
U (WA, =c, [ dth(t) exp(itH,) exp(iR, ) exp(- itH,)
Xexp(- iRgn)A exp(iRgn)A

By Theorem I.12 and the functional calculus, exp(itH,)
X exp(iR, ) exp(— itHy) = exp(iRqomy (isu ., ). Using this fact,
the fact that A €A(S), and Theorem 1.3, we have

(AN, =c, [ dth(t) €XD(R py(1y,) €XP(= iRy, y)A
Xexp(iR (., ,)A

=c, [ dth(t)

xexp(iR, ) exp(iR,)A

=c, [ dth(t) exp(iR

eXP(iR y(10ue,) €XP(- iR,) exp(~ iR, )A
exp(itu)e,.) exp(- iRr)A eXp(iRr)A'
By Theorem 1. 3,
exp(~iR,) exp(Ry) exp(R,) = exp(i Im(F, ) exp(iR)
and
eXP(iR yyy(11),,) EXPUR )
=exp(: Im(exp(itu)gn, F)]exp{iR[ exp(z'tu)gn+ Fl}.
Hence,
P (WA =c, [ dth(t)expli Im(F,r)]
xexpl} Im(exp(itu), , F)]expliRlexp(iti;, + FIA.
By Theorem 1.4,
exp(iRexp(itu)!n*F)A
=exp[- || exp(itu)grl + FII*/4]exp(iC, u):,,+F)
X eXP(iA 4yp (118 gor )
=exp(- llg,|I?/4) exp(~ [ FII?/4)
xexp| -z Re(exp(itu), , F)exp(iCypoiirurp 50
Therefore, using the fact that c":exp(tlgﬂ||2/4’;, we have
0. (WA, = [ dth(t) exp(- || FI?/4) expli Im(F, 7)]
x exp[- 5(F, exp(itu)gn)] eXPUC ppienrg,or) -

By property (3) of the sequence {f,} and the boundedness
of §, there exists an integer N such that, for »> N, g,
- [i/(2m)¥¥])/ u*/2=g on S so that (F, exp(itu), )
= (F, exp(z'tu)g". From now on, we will only consider »
= N. Put
7(8) = exp(= L FII*/4)k(t) exp[ - 3(F, exp(itn), }].
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Then Ng[A]=[dT(X )A].

b, WAN, = [ dtn(t) exp(iC o, Gty oF A, (3) Theovem 11.3: Let S be a bounded open set in IR®,
n

To make sense of the limit of the sequence {4, (%)}, Then there exist constants M,, M,, and L such that

first we note that the Fock space k can be identified in 1, (RAA N < M (LN EI, + IR UDHATN
a natural way with the space € &3>, & L3((IR?¥).!® This L2
space, in turn, can be identified vjiith the space L*(X), + Mol (N + DH2[A]N
where X is the set {a} U U, (IR?Y. The measure on X is for all he § and [A]eD y_.pni/2.

defined as the disjoint union of the measures on {a} and §
(R?), j=1,2, «- -, where the measure on {g} is the
counting measure and the measure on {IR?) is Lebesgue

From this theorem and our previous remarks, we
have the following corollary:

measure. The spaces € @37, ® L*((R?)) and L*(X) are Corollary 11.4: For every bounded open set S in R?,
identified as follows: f A®Y7, ¢, € C O3, L ((RY), p(r) is definable on all [A]le ) , ,;1/2 as a strong limit
then we identify it with the element & in L?(X) defined in 7 of the sequence {zpn(h)AAn}. sMoreover, for such §,
by ®(a)=x, &y, . . .,k)=@;(ky, .. .,k,) for all j there exist constants M,(S), M,(S), and L(S) such that

=1,2, <+- and for all (&, . . .,k;)c (R?. Similarly, K
we can identify 7 with the symmetric elements of L%(X), 190 < MLSHL SR, + R IDILATI,
that is, those elements & of L*(X) with the property + MR NN g+ DA

that for all [A]ED(NS,,)UZ and he S.
Blly, kg e kg, k)
=@y, . . yky e sk e k) Remark 11.5: A straightforward calculation shows
2 1 ! that for each F e L(IR®) with support in S, a bounded
for all j, j=1,2, <=+, for all j,, j, such that 1 <4, <j, open set in R?, [exp(iRp)] €y up) 1/2. Since B=U[A(S)]
<j, and for all (y, . . .,k;)e (R*Y. Under this identifica- g5 genge in K, Corollary II.4 implies that (k) is densely
tion, the element exp(iC it )s’n)A in # is identified defined on K.
with the function &f in L3(X) given by ®i(a)=1,
By, . . . k) =[explt) g+ F19y, . . ., k)¢ Remark 11, 6: Corollary 11, 4 asserts that for fixed
i ke S, B(h)| 4.5 is bounded with respect to (Ng+D/?
:p131 ilexp(ity) g, + Fllk,). and that for fixed A</ y_.;1/20(h)A is a continuous

function of & relative to the norm (IR, + 07711,
Define a function &! on X by &f(a)=1. &'(k,, . . .,k;)

) .3: P = AA |2, Th
= H;li(exp(im)ngF)(k,). The sequence ®} coverges] Proof of Theorem 11 ut £, = 1, (MAA, I en
pointwise on X to ! for each ¢, but does not converge in E,=c% fdth(t) exp(itH,) exp(-itH JAA ,

the L? sense because &t L2%(X). (This follows from the . ,
fact that (exp(itp)g + F) ¢ LXR"). Now put ¥, (k) J ds his) explisHo) exp(—isH JAN,).

= [gredtn(t)®} and ¥ (k) =] p.din(t)®t. Then for each n, By Fubini’s theorem,

¥ () is the element of L3(X) corresponding to ¥ (R)AA, . _ 2 Pt

We wish to show that ¥ (k) e L2(X) and that ¥ (1) =¥ () E,=c, ) ] dids h(Oh(s)

in the L? sense, To do this, it suffices by the dominated (exp(itH,) exp(~ itH,)AA , explisH,) exp(~isH AN ).
convergence theorem to show that ¥ (k) is dominated in
L? norm by a function in L*(X). It is clear that | ¥ (k)|
is an increasing sequence, so that ()i,

=lim,__ ¥ _(k), by the monotone convergence theorem

By Theorem 1.6, we may regard 7 as 7,® f,, where

7, is the Fock space over L*(S) and 7, is the Fock space
over L%*(S°). Let A, and A, denote the vacuum states for

e

and 1 _(R)i, < ¥ (RN, for all » (where we are allowing the 7y and f,. Let

possibility that 11 ¥(k)All, =), If we can show that the Hi=dT(uxs), H:=dT(uxge),
sequence {I'¥ (k)il,} is bounded, it will follow that 1% (k) . . 2 , . 2 .
< and that ¥ (k) dominates {¥ (%)} in Z? norm. Also, H,=exp(iR,)Hyexp(~iR,), and H =exp(-R, )Hiexp(-iR,).
the bound on the sequence {II¥ (4)il,} will be a bound on Then

(i,

Since ¥ (B),=1y, (AN I, we have reduced the
problem to showing that {Ilzj)n(h)AA"H} is bounded. Actual-
ly, we will prove an even stronger result. = exp(itH}) exp(- itH-)A exp(iR,) exp(itH?)

explitH,) exp(- itH JAA,
=exp[it(Hy+ H3)] exp[ - it(H-+ H?)]A exp(iR,) exp(iR, A

Definition I1.1: For uc K, let lulx denote its norm in xexp(—itH?) exp(iR, JA
n

K. If S is a bounded open set in R¢, let [A] denote the o - ; . ,
element in A4(S) determined by 4, 1, e., = [exp(itHs) exp(~ itH,)A exp(er)][exp(thf))exp(zR,,n)]A.

[4]={BcA(S)] lim (A~ B)* (A~ B)A,A,). Letting B=exp(-iR, )4 exp(iR,), we have
Lt . s . .
Definition 11. 2: N¢ denotes the closure of the unbounded (explitH,) exp(~ itH JAA,, explisHy) exp(-isH )AN,)

operator N§ defined on the closure of [A(S)] in X as = (exp(itH}) exp(— itH!)A exp(—iR,) Ay,

follows. The domain of N¢ is {[A]l4A A4 (S) and dT(X)A

is a bounded operator on Fock space}. Ng is defined on

this domain by the formula x (exp(itH?) exp(iR, ),,exp(isH;) exp(iR, )A,)
n

exp(isH;) exp(— isH,)A exp(- iR,) A,)
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= (exp(itH}) exp(iR,) exp(- itHS)BA, ,
exp(isH3) exp(iR,) exp(— isHL)BA,)
x (exp(itH;) exp(iR, )A

Let o(¢,s)= (exp(itH) exp(iR,) exp(— itHy)BA,, explisHy)
x exp(iR,)exp(—isH;)BA,). Then

—cszdtdsh(t) (s)ols,s)
X (exp(;tH?) exp(iR, )A,, explisH2) exp(ian)Az).

25 €xplisH3) exp(iR,n)Az)-

By Theorem 1.4,
E =exp(ll#I1?/2) [ [ dtds h(t)h n(s)olt,s)
x(exp(itH?) exp(iC, )0y, explisH}) exp(iC,ﬂ)Az).
Now putting p,= ux¢¢ and using Theorems 1.3 and 1.12,
we have
(exp(itH?) exp(iCr")Az, explisH?) exp(icrn)Az)
= (exp[iC 1A,, expliC Ap)

exp (ituz)r exp (isuz),-n]

7, 1)

Il
s

([exp(ztu2 1@ [exp(és iy)

>
Jij
=]

I
100
H

(exp itly)r,, explisu,)r,»

A3
T
<

»
([dk exp(itiL,) exp(—is ,) |7 (k)] )

1
i H 2
=& f f Bt 7o)

x explit iy (ky)] expl - is 1,k ,)].

Hence we have

E,,:exp(wnz/szdtds RO 2 -;—,
p=0 .

f fﬂdk|r )|

x expliti,(k,)] expl—isu,ylk,)]olt,s).
Then by Fubini’s Theorem,

E":exp(||r||2/2)2—|f f I dk, |7, (k)|
p=0 D* a=1

xffdtds h(t)ﬂsﬂem(itéug(kab

»
X exp (— is Z_)l uz(ka)) olt,s).

We are trying to obtain an estimate of E, that de-
pends on [I[A]ll, , INY2[A]Il, , l&lly, and (IR’]l,, but not
on n. To do this, we shall need the following lemma.

Lemma I1.7: If 8 is a function on IR; (the nonnegative
half-line) with the property that | 8()1 < minM(1/£,1/e)
for all > 0, then | 6(8)| < M([}s exp(~ st)ds + 2 exp(- t)
for all £= 0.

Pyroof: Let t be greater than 0. Consider J'0°°s exp(-st)
ds. Integrating by parts, with u=s and dv=-exp(-st)ds,
we obtain 1/£ = [ s exp(-st)ds = [} s exp(- st) ds +
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I, sexp(-st)ds. Integrating [” s exp(- s¥)ds by parts
with # =s and dv = exp(- s¢), we obtain

fl sexp(=st)ds = - (1/8)s exp(~st) || + (1/1) [ " exp(- st)ds
1
=1/t exp(~ 1)+ (1/1*) exp(-¢t).
Hence, 1/£=[sexp(—st)ds+ (1/f) exp(~£)+ (1/#)
% exp( £). If t=1, the above expression is less than
or equal to f dss exp( st) +2exp(~¢). If 0<¢<1, then
1/e<2/e<2exp(—1) < [}dssexp(-st)+ 2exp(-£). Now

I
since 19( ) < minM( 1/tE 1/e) for all t= 0, |8(2)]
sM fosexp( st)ds + 2 exp(-¢#)) for all ¢> 0. a

Now put 8(T)=[[ dtds h(t)h(s) exp(itT) exp(—-isT)ol¢t,s).
In order to apply the lemma, we will show that | 6(/)|
<[4 ]'A Hz02 and | (7)1 < (1/T2 (taf i [Aln, +ucCh nmi,
XAl 1 (Ng +1)1/2[ Jix . To prove the first estimate, we
note that | 6(7)| $”dtdslh(t)| Th(s)| | o{¢,s)1 and, by
the definition of ¢ and the Schwarz inequality,

|o(t,s)| < Il exp(itH}) exp(iR,) exp(— itH3) BA, |
x|| explisH) exp(iR,) exp(— isHy) BA,||
= |BA, |17 = |l exp(— iR, )A exp(iR )A,|*
= lAexp(iR,)A, 1P
= [I[A]I.
6D < [[atds || |r(s) | ILAINZ
=[A]IZ [Inli.

To obtain the second estimate, we integrate by parts
in s and ¢, obtaining

oT)= (/T [[ atas(n' (On'(s)olt,s)

+ W (OR(s)0,(t, ) + h(OR' ()0, (t, )
+r(On(s)o, (t,s)].

Then

|o(T)| < (/7] [[atds|n'(®)] [n'(s)| |olt,s)]

+ [fatds|n(t)
+ [[dtds|r@®)| |r'(s)] | o,(t,9)|
+ [[atds|n®)| |1(s)| |o,,{t,8)]].
Since U(t,s) is symmetric in ¢ and s,
[ atdas |’ ()] [n(s)] |olt,s)]
= [[atds|n(®)] |'(s)] Lo,(4,8)],

and the previous equation reduces to

| 16s)] Jot,5)]

lo(T)| <[ [[atds|w @] |w(s)| |olt,s)]

+2 [[atas|w@®)] |k(s)| |olt,s)]

+ [[atas|n®| |ns)] |0, t,8)]]
Since o(¢,s)i <i[A]if, the first of these three double
integrals is less than or equal to H[ANE unn?,

To estimate the second integral, we first note that

o lt,s *—(exp(thl) exp(iR,) exp(— itHy) BA,,
exp(isHY) exp(iR,) exp(—isHy) BA,)
= (exp(z’tH%,) exp(iR,) exp(~ itHy)BA,,
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d
s [exp(isH}) expliR,) exp{- isHé)BAl]) ,

% [exp(isH}) exp(iR,) exp(— isHy)BA, |

= iH} explisH}) exp(iR,) exp(— isHy) BA,
~iexp(isH3) exp(iR,H} exp(- isHG)BA,
=iexp(isHL[H3, exp(iR,)] exp(- isHL)BA, .
Put 4, = ux,. Then by Theorem I.13
0 .
Fe [exp(isHL) exp(iR,) exp(— isH3)BA, |

=iexp(isHy) G (17, 7) + Ry, ,)exp(~ isHy)BA,
=iexp(isHy) G (u,7,7) + R,, ) exp(~ isHy)
xexp(~ iR A expiR,)A\,.
By Theorem I.12 and the functional calculus, this last
expression is equal to

iexplisHE) (5 (uyr, 7) + Riulr) exp(— iRy i ouim)
Xexp(~isHE)A exp(iR,)A,

Put C=[3(u,7,7) + R, ,1eXP(= iRy _ssu,m
where Ns_dl"(xs) By Theorem 1.2,

) (Ng+ 12,

Riul exP(— iRexp(-isulr)
= exp(— iRexp(-isulr))Riulr
+ Im(exp(— is /J’L)'V, “17’) eXp(_ iRexn(-isulr))
onD . Hence by Theorem 1.11, C is a bounded

opera{o%‘ for each s and the bound is independent of s.
Then we have

?

FYe [exp(isHE) exp(iR,) exp(— isHS)BA, |
=i exp(isHL)C(Ng+ I)'/? exp(- isHY)A exp(iR, A,
= exp(isH3)C exp(~ isHL)(Ng +1)/2A exp(iR, )A,.

Therefore,

12

== lexp(isHy) exp(iR,) exp(- isHy) BA, ]|

= |li exp(isH})C (exp( —stl)[(J‘\-’s'*-I)”zA] exp(iR A, ||
<NICI) (N g+ D*/2A) exp(iR,)A, ||

=[ICI| (N g+ DM EA]N.

From this it follows that

| o(t,s)| < |l exp(itH}) exp(iR,) exp(— itH:)BA,|

X “ ;—S [exp(isHy) exp(iR,) exp(- isHy)BA, ] l
<I[AJ, NI N+ DH2[ A,

Thus, the second integral is less than or equal to

2 [[dtas|w )] [n(s)| NANKNCI NG+ DAl
= 201CIl linll, IR [ ITATH N + DM 2[A]l) -

To estimate the third integral, we observe that
0
fo, J(t,8)] = } (5? [exp{izH}) exp(iR,) exp{—itH3)BA,],
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% [explisHE) expliR, ) exp(- isHé)BAJ) '

: [exp(itH}) exp(iR,) exp(= itH;)BA, |

X

%[exp(isH},) exp(iR,) exp(- isHy)BA, |

<|ICIPN(Ng + DM LA

implying that the third integral is less than or equal to
ICIPNRIEN(N g+ DM 2[A]ll; . Using the estimates on these
integrals, we have

Lo(T)| < (1/ TR IFNLATIE + 2NClRI IR LA,
x||(Ng+ D24, +ICIPIRIFI(NG + DY2LANR)

= (/)R [ATI, + HCH iRl KN g+ DR [Al, P

Put M= (111, I[Alll« + ICIl Al (KN g+ DM 2AI?
+ ell[A]ll2 {1z])2. Then by our two estimates on 8, we have
| (T)| < minM(1/7%,1/e). Therefore, by Lemma II.7,
1 8(T) < M( fols exp(—sT)ds +2exp(- T) for all T= 0,
and, recalling the definition of 8, we get

| [f atds r(t)h(s) exp(it T) exp(—is T)o(t,s)|
:M(fo sexp(—sT)ds + 2exp(- T)).
Putting T=73%,.,u,(k,) in this last inequality, we have

— ®
[[ dtds n(t)n(s)exp (it Z—? uz(km)>

»
X exp (— is Z:i #g(ka)) olt,s)

?

< M[folsexp <—s Zj) uz(ka)> ds + 2exp (— :Lz:l uz(ka)):l .

Using this result in Eq. (1), we get

E"sMexp(lerZ/Z — f fﬂdka|rn(ka)\2
p=0 p: =1

X u)lseXp <—s aze;l uz(ka)> ds +2exp (— é“z(ka))] .

By Fubini’s theorem, this is equal to

1 -
MeXp(llrllz/Z)(/ ds s 2 i,ff fldka\rn(ka)|2
o p=0 D! a=1
xexp[-su,(k,)] +22 f [U dk,
x| 7, (ky)|? exp[~- uz(ka)])
:MeXp(lthZ/Z)(f ds{sexplll |7, |?exp(-su,)l,]}
+2exp[ll |7, exp(= u,)Il,]
1
< Mexp(llrI?/2) j dsls exp(ll |g]?exp(=swll]
+ 2 exp(]| ]g|2exp(—u)]|l)) .

Put K =exp(i1#2/2)( f ds [exp(ll 1 g12exp(—su,)]
+2exp(l | gl2exp(- u)lr} We claim that K <«, Since
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gl ‘exp( ui, is clearly finite, it suffices to show
thatf ds[sexp(it 1g!?) exp(-spul,;)]<w. Now

Il fglzexp(—su)lh:#f3 u—g,l(;)exp(—su)dk
R

BN (S S
T 4n® Jps URIZ+m®?72

xexp[-s(|k |2+ m® /2] dk.

By the spherical symmetry of the integrand, we have

1 (- o?
Il |g|2exp(—su)||1=”—5 jo 7 T

x exp[s(p? m*)*/?]dp.
put xp[s(p |

1 2
B(s):%—s-f Wexp[_ s(p2+m2)1/2]dp
o )

and

©

1

2
Y(S):”_s[ (p—2_}_9m—2)3ﬁexp[—s(p2+m2)1/z]dp.

Then

folds [sexp(ll |g|>exp(-swll,)]
:folsexp[ﬂ(s)+ s)]ds
= | (s exp[H(s)]) exp((s)) ds.

It is clear that (s) and hence exp(4(s)) are bounded
functions on [0, 1]. Hence to show convergence of the
integral, it suffices to show that f sexp(y(s))ds <.
But

du

Y
1/ (" -

€= (f du +f exp(—u)du)
), u L

i fi SeXp(Y(s))dssI 5 exp [ﬂis ((—lns)+%) ds

0

:[l)ls(é exp(l/e)) l/'sds

1

1
< (exp(l/e))”"sf s ds
0

— (exp(l/e))”1r5 < oo,

Thus fol ds[s exp(l | gl?exp(— sp)ll;)]< < and hence K

<o, So we have
E, s ME=K[(IR’[IN[A]llx + ICl IRl
X ||(Ng + DAYl P+ ell[ATI k1)
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< K[ ILILATI -+ ICI 11l
(g + DM2[ANl, +ell[Alllx lIAll, 2.

Recalling the definition of E, , we have
o, (AN < & 2[R LA, + NCH iRl
XI(Ng + DYLAT+ ell[A Ml IRl ]
=M(LIIRN, + R IHNLATIN
+ MylInllll(Ng + DA,

where M, =K'/ M,=K'"21Cil, and L=e/M,. This
completes the proof of Theorem II. 3,

For the case d> 3, we cannot prove a detailed esti-
mate like the one in Theorem II. 3; in fact, we cannot
even construct ¥(%) for < § in general. We will con-
struct (z) for h < . To do this, we will show that the
sequence !13,(R)AA 115 is a bounded sequence when A4
=exp(iR;) and F is a continuous function with compact
support on R%. (Note that the set of all finite linear com-
binations of operators [exp(iR;)], where F is continuous
and has compact support is dense in A ; hence when we
have shown that I (2)AA 113 is bounded for such A, we
will have shown (k) can be defined on a dense set. )

By the remarks preceding Definition II.1, we see that
it suffices to show that ¥ (k)il, <x where, as before,

U(h) = [grdtn(®)®? and n(t) = exp(— 1| F12/4)h(t) exp| - 5 (F,
exp(itu)g)]. First we need some lemmas. In the follow-
ing we write Zh for % and Z-h=h.

Lemma 11.8:
1271 (1 exp{% expl - it (k) JAg(R)})(s) exp(VIslll..
< exp{3 | Ag(k)| exp[ W THIZ= R s)exp(w”sl lle,ss
where k< R, A is a constant, and Iif(s)ll,, , denotes
SUD_ g ool fIS) .
Proof:
Z(hexp {5 exp[— itu(R)Ag(R)})
= ZYn)* Z-Hexp{} exp[-itn(2)]AgR)]).
Note that if §, denotes the Dirac delta distribution

centered at x, then

2(glasteas) v
= [5Ag(R)Y Z(8ju e )(2)
FE[ g ]]’ )

& [5AgB)Y exp(=itju)(k)
- B

By

= exp{tAg(k) exp[ - itpu(k)]}

in the sense of distributions. Therefore,

ZMexp{: exp[- itp(k)Agk)}) = [_Ag_gl‘;)]é_wyu

and

Z k) * Z-Wexpls expl - it (k) ]Ag(R) D(s)

= [$Ag®B)Y Z-'h(- ju(k) + 5)
,E g(B)} A Ju s!

Eugene Hamilton 452



From this it follows that

12" (k)* 2™ (exp(t exp[~ itu(k) JAg(R)(s) exp(VIsl),,
< 23 LM'E)\_J Ilh[—]“(k)+ s]exp(‘[l?l )“eo,s

i—zié’(i’—- lIh(s) exp(Ts FFAEN) .,

< l%Aigk)” exp(VjEMIn(s) exp(VTs Dl
3Ag(k) exp(Vu(®)) 1/

j=0 it

ln(s) exp(M sl

=exp{3 | Ag(k) | exp[ V(R ]HIn(s) exp(VIs| N,

Lemma 1.9: Let k;c R and D;eC for j=1,...,n.
Let

M= max 3 |g(k,)D; exp[Viulk,)]|
Then
zt [h exp( Zl) exp[- Ztu(i’) Uej)Dj]) ](s)exp(\fl—s_l e s

< eM||h(s)exp(V Is D, ;.

Proof: We will use induction on n. For n=1, the
result is true by Lemma II. 8, If the result is true for
n—1, then

Z-1 [h exp (_;_ 2:‘1/ exp|[ - itﬂ%)]g(’ﬁ)Di )] (s)exp(VIsl )“

_ 0 Z_l{ [hexp(; = jEﬂexp[—nztul(k gle,)D; )]

X exp <% % eXp[il‘u(kn)]g(k,.)D,)} (s)exp(VIsl)

©,5

zZ {h exp [% "'Zl) expl—itulk;)lelk;)

< exp(M/n) RS

X (Dj n;l)]} (s) exp(Vsl)

< exp(M/n) exp[ (n — )M/ nl1i(s) exp(VTs il ¢
(by the induction hypothesis)
=e¥in(s) exp(Vis .

t (by Lemma 1I.8)
o,

Lemma I1,10: Let F be a continuous function with
compact support on R?, Suppose the support is contained
in the set B={xe Rl |x;l <L, j=1,...,d (where x;
denotes the jth coordinate of x)}. Let M=3L*?

X Sup, - pa | g(k)F(k) exp[ Viu(k)]l . Then
12k exp[(F, exp(it 1)g) Hs) exp(VIs L.,
<exp(M) || iu(s) exp(|s[*/?) | .

Proof: For each positive integer », let P, be the

partition of B into »? boxes of equal size. Choose one

point from each box in P, and call the set so obtained
@,. Then by the continuity of F,

}zi.rE%(L"/nd)k? exp[~ itu(k,) gk, Flk,)

=(F,explitn)g) for each ¢.
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Hence,

1 a
lim i(#) exp (5 %- b>

= 0 k;EQ,

exp[ - itulk,)lg(k,) F(k, ))

=h(t) exp[3(F, exp(iti)g)] for all £.
Put

£ E)=h(t )exp(2
and

/£ W =h(2) exp[z(F, exp(iti)g)].
Then |/ ()] < [h(t)|e* and |/ (#)| < |Rr(D)|e¥.

Since ke L*(RY), #, =/ dominatedly, and so £, =/
in L*(R?). Therefore,/ — ¢/ uniformly, and
/ (s)exp(VIs|) =/ (s) exp(ﬁ)pomtmse But, by
Lemma IL. 9,

||/ s)exp(VIsDll.,
and so
17(s) exp(vTs1 il , < e¥lli(s) exp(TsDlL .
Theovem I1.11: 1¥(R)ll, < o,
Proof:

Z, exl-itute, g, ()

n

.<ellk(s)exp(VIs)I|

©,5

V(p+1)!

\p(h)zg) 2 5 fdtn(t)(exp(ituHF)“”,

RZeAlH

+1)'
po (P f J"Hdk
din(t)(exp(itu)g + F)® :
_$ (p+DY f
_,Zi G f ljdtn

1T Flg,
JET,-T

)y 22 I explitu(k,)]
TCT JeT

b
xg(k;) “h dk,
j=1

(where T,={1,2, .. .,p}
_ p+1
_p=0 (p‘)z f f

2 r
1 itulk, .
x exp[ztu(k,)]g(kj)‘ 1 ar,

I Fk,)

TCT JET,=T

ﬁtn(t)

€T

P+1)'J‘ J’H dk,

M F, )n(Z ulk, )) )

ICT -T

xﬁ(:er u(k].)) I glk;) -

- [T?

1
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Recall that n(¢) = exp(- il FI?/4)n(t) exp| - $(F, exp(itp)g)]
where ke ¢. If M is chosen as in Lemma 3 and M’
=h(s)exp(Visin, ,s» then, putting M" =27 exp(~ 1| FI2/
4)e’ M’, we have

1 ()12

< 20(p+ 1)1
\Mg{) T I ndk

1z g
X [TSETPJEY}P-T exp[(jzg Mkj)) jier gley) ]

Using this last inequality and the fact that for a,> 0,
i=1, <1,

F(k,)

we have

I ()13

<M”Z}L(E+_1)_.f f 11 gk,

1)

x | 2
TCT JkT -T

M"E 2"(2—} m!
- p=0 {p! >

x ff [|F| exp (—71;— u) ([gl)(‘”] zjlidkj

S 2(p+ 1)
—M %‘()»———(p!)z

X{.[EF(k)I +exp (—T[l)- u(k))]g(k)[\ de}P<oo.

C. Closability of the annihilation operator

We have defined ¢(%) on a dense subset of K. Although
»,(h) is a bounded operator for all », we cannot expect
¥(k) to be bounded, for the sequence {c | tends to in-
finity. However, we can show that ¥(#) is closable.
This is tantamount to showing that the adjoint, ¢*(h):

F — K, is densely defined.

Theorem 11.12:

jF(k l -enr |glk,)| exp (——\/%u(kj)ﬂ 2

y*(h) is densely defined.

Proof: Let v=AA=exp(iR;)A = F, where F has
bounded support and is an element of LXIR®). v D ,, iff
(v(n)[G],v) is a continuous function of [G] on [A]. Note
that

WG, v) = (Lim y (RIGA,,, )

=lim(y (R)GA ,,v)

o
=1im(GA , y* (h)o).
n-o
To show that (4(k)[G],v) is a continuous function of [G],
we must show that there exists an M such that
[@m)[G1,v)| = MIGHl, for all [G]c [A].
Thus we must show that |lim, (GA ,y* (R)v)! < MIGik .

N
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Now
[1im (GA,, ¥4 ()0)| < im supliGA,JI 1% (ko]
< lim supl|GA, IIlim supllu% (R)vll.
~e o

But lim,_. supllGA I =lim___IGA I = IGlix. We claim
that there exists an M such that ny*(h)vil < M for all a.
Then lim,_ , supl¢* (h)v!l < M, so that | y(R)G,»)! < MG,
Thus we have reduced the problem to showing that the

sequence {ll* (k)i } is bounded. Recalling the definition
of (k) and taking adjoints, we get

PRy =c, [ dt h(t) exp(itH,) exp(~ itH,) exp(iR;)A
:c,,fdth(t)exp(iRgn) explitH,) exp(—iRg")
Xexp(-itH,) exp(iR ,)A
=c exp(iR ) [ dth(t) exp(- 2 )exp(iR A
=c,exp(iR, jdt () exp{3¢ Im(F, exp(itit)g,)]
x exp(ZRF-exn(i tu “"n) A
:cnexp(iRgn)fdth(l)exp[%z‘lm(F, expliti)g,)]
Xexp(- | F - explitu)g,[1?/4) exp(iC, Feexstitug,
=c, exp(iR, ]dth(t )exp[3(F, exp(itn)g,)]
X exp(— IIF|I2/4)eXp(— llg JI?/4) exp(iCp.
= eXp(iRgn) | atn(t) expl5(F, explitu)g )]
X exp(= I FI*/4) eXp(iCr_opciyie JA-

Choose N such that, for n= N, g,=[-4/(27)]/(1/13/?)
on the support of F. Suppose n> N. Put g= —{i/(27)?)
(1/u/2). Then(F,exp(iti)g,)=(F, exp(itp)g). Put n(1)
=h() exp[z(F, exp(itp)g)] exp(— 1 FI?/4). Then y*(h)

= exp(iR, ) [ din(t) exp(iCF_exn(”u)gn)A. Since exp(iRgn)
is unitary,

YA

A

explitn)g,

e (vl =l [ dtn(t) exp(iC .
=l [ dtn(t)exp(iC

By Eq. (3), this gives
I (R)vlt= N1y, (r) expliR _x)A, ||

By Theorem II. 3, Remark II.5, and Theorem II.11,
My, (1) expliR F))A IItis a bounded sequence. Hence
{Hw‘; (R)vil} is a bounded sequence and thus v =/ ).

YA

exp(itu.)gn

All.

emfitu)gn-F)

Now by Theorem 1,7 and the strong continuity of
exp(iR,) (Theorem 1.5), {exp(iR,)AI F < LR®) and F
has bounded support!} is dense in 7. Thus ¢*(k) is dense-
ly defined, and (%) is closable.

1ll. THE ONE PARTICLE HAMILTONIAN WITHOUT
CUTOFFS

A. Denseness of the range of the creation operator

In Sec. IIA, we constructed the one nucleon Hamilton-
ian H without cutoffs by specifying that it satisfy the
equation

)JA]

for A = A(S). We will now give an alternate method of
constructing the one nucleon Hamiltonian by using the
nucleon creation operator. Although we already have
a method of constructing the one nucleon Hamiltonian

expl(itH)[A]= [exp(iRng) explit dT(ux s)] exp(— iR,y
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in this model, it is to be hoped that the alternate method
can be used in other models to construct the Hamiltonian
from the nucleon creation operator,

The alternate method of constructing the Hamiltonian
is simply to define it as the infinitesimal generator of
the unitary group U(¢), where U(#) is given by U(z}y*(h)v
= *(h,) exp(itH v, where h,(x)=h(x+1). In order to
show that U(#) is unitary, it is necessary to show that
this defines U(¢) on a dense set. Thus, we must show
that UhCS range ¢*(k) is dense in K. FlI‘St we will need
some lemmas. Put D=V, ¢ g1, ¢*(A)D’, where D’
= the linear span of {exp({R)A| F has compact support
and is an element of L*(R?)}.

Lemma 11.1: [exp(iR ) exp(- iR leDfor FeL

e LE(IR?) with compact support.

Proof: Put 1{#) = h(t) exp| - i Im(exp(itp)g, F)]
x exp(i Im( g, F)) and choose he § such that n(x)
=exp(-slxi ) (There is a unique % with this property,
since the Fourier transform operator is a bijection from
S onto §.) We claim that

J*(h)exp(iR A

exp(-su g

={exp(l| exp(- s u)gl?/4) exp(iR ;)
Xexp(— iRexn(—su)g)]’

which will establish the desired result since the left

side of this equation is an element of D and the right side
side is a scalar multiple of [exp(iR.)exp(-iR,, (,,))]-
Let G& LARY) and have compact support., Then

(y* () exp(iR A, [exp(iR,)])
= (explR)A, o) expliR,)))
=lim (exp(iR A, ¥ (h)exp(iR,A,)
=1lim (4} (h) exp(iR ;)\, exp(iR,)A,)
= ;:1:151 (c, [ dtn(t) exp(itH,) exp(— itH,) exp(iR,)A
exp(iR’; JA )
=lim(c, [ dth(t) expGR, ) exp(itH,)
;exp(— iR, )exp(-itH,) exp(iRp)A, exp(iR;)A,).
Now
c, | dth(d) exp(z‘Rgn) exp(itH,) exp(— zRgn) exp(~ itH,) exp(iR)A
=c, | dth(t)exp(iR, ) exp(- iR it rg,) EXPURE)A
=c,exp(iRg) [ dth(1) exp[-iIm(exp(itp)g,, F)]

xexp(iIm(g,, )]exp(iRg Yexp(-4R A,

explitulg,

For » sufficiently large, this is equal to

c,expliR;) [ dt h(t) exp[- i Im(exp(itu)g, F)]
) exp(iRgn) exp(~iR
=exp(iRg) [ dtn(t)

=exp(iRy) exp(z'Rgn) Jdtn@) exp(-iC

xexp[iIm{g, YA

exp(itu)g77

A
JA.

exp(z'Rgn) exp(-iC

explitudg,
expfitu)gn

Now we have

fdz’ n(t)exp(— 1€ puntiture,)

- f an =2 (¢ %
p=0

explitulg,
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:pz?;—(_:pf—)p_ dtn(t)(cexp(itu)g")P
:Z}) (—'p—’!)i atn(t) O‘ dk exp[itu(k)]gn(k)a*(k»'

z)"

fdtn(t)f f I ak; explitiL(k,)]

Xg"(kj)(l*(kj)
_i(‘“pf“‘f 11 g0 &,

p=0 Pl
b
x7(t) exp (ztE1 u(kﬂ)

:2(_7?)»_ j f(n dk g,k a* (ke ))
5
X (ZE u(k])>
xR — b p
::>=Eo S_PL'—J‘ ) J’jl;ll dk; g,(k;)a* (k) exp| ~ s ulk,)]
_5kar (f g, expl - sl (1)
p=0 p:
:,E‘-‘O (;pz!'_(cexp(-su)gn)p =exp(- icexp(~su)gn)'
Therefore,
¢, Jdth() expliR, ) exp(itH,) exp(- iR, )

Xexp(-itH,) exp(iR)A

= eXp(ZRF) exp(iRgn) eXp(—' icexp(-su)g")A
= exp(llexp(- s wg,|?/4) exp(iR ) exp(iR, )
n
xexp(- iR eurg A

=exp(llexp(-si)g, II*/4) exp(iR )
X exp(~ iRexp(_su)g") exp(iR, )A,

where the last step follows from the fact that
Im(exp(-sulg,,g,)=0. Hence

(* (h) exp(iR A, [exp(iR,)])

=1lim (exp(llexp(- s u)g,I?/4)

newo

> exp(- iRexv(-su))An’ eXp(iRG)An)

= eXp(HeXp(— S Ll)gHZ/‘l) lim (exp(iRF) eXp(" iRexv(-su)g
n

7100

xexp(—~ iR I\, exp(iR, )An)

{a
explesu )gﬂ

= exp(/l exp(- s u)gll?/4) lim (exp(- iR

n-=cc

Xexp(iRgn)A, exp(-iRy) exp(iR;) exp(iR, )\)

expl -su)gn)

=exp(ll exp(- su)gl2/4) Lim (exp(iR, )

Eugene Hamilton 455



XeXD(~ iRogy(.urg, /A eXP(= iRy) exp(iR;) eXp(iR, )A)
= exp(ll exp(= s w)gll*/4) 1im (exp(= iRy gue, A,
exp(-iR,) exp(— iRy) exp(iR;) exp(iR,)A)
=exp(ll exp(~ s u)gll?/4) exp(~ iR, (i), A,
exp(~iR,) exp(~ iRy) exp(iR;) exp(iR,)A)
=exp(ll exp(~ s u)gll*/4) lim (exp(iRg")

xexp(- iR A, exp(~iR;) exp(iR,) exp(iRgn)A)

expl-su)g
=exp(ll exp(~ s u)gll*/4)

x1im (exp(iR;) exp(— iR, ou)e)\,» €XD(IR,IA,)

N~

= (lexp(ll exp(~ s u)gll?/4) exp(iR;)
XeXP(= iR (-5 ]» [€XD(ER)]).
Therefore, we have the desired result

P*(h) exp(iR A =[exp([| exp(—s u)gll?/4)

Xexp(iRF) eXp(—- iRexp(-su )g)].

Lemma MI.2: lim_  [exp(iRz) exp(— iR ;)01
= [exp(iRF)].

Proof:

lim llfexp(iR;)] - [exp(iR) exp(= iR, (s, )]l

g

=lim lI[exp(iR ) — exp(— iR, () NI

5

=1lim lim (exp(iRe)I - exp[~ iR, (_s,\ ]0,,1,))

§=% pecx

=1lim lim (exp(iR)NI - exp[~ iR, o), €XPUR, A,

S~®@ paco

exp(z'R‘p)A)

=lim lim [(3¢Im(F ) |(exp R, ) exp(iRy)
S paco

X (I - exp[- iR

exp(=su)g

DA, exp(R, )A)

=lim exp[4: Im(F, g) (exp(iR )} — exp(- iR

S

exp{-sulg

= lim exp[3i Im(F, 2) (I - exp[- iR JA

S0

exp(—iR,)A)=0,

expl-sulg/ "1

since exp(- iR ) = exp(—iR,) =1 strongly as s — .

oxp(-sudg
Theovem II1. 3; The linear span of D is dense in K.
Pyoof: This follows immediately from Lemmas IIL. 1

and III. 2 and the density of {{exp(iR,)]| Fe L*(IR?) with
compact support} in K.

B. The relationship between the one nucleon
Hamiltonian and the nucleon creation operator

In the last section, we showed how to construct the
one nucleon Hamiltonian from the nucleon creation
operator and the free Hamiltonian; now we show that
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YA, A)

the Hamiltonian obtained this way is same as the one
defined in Sec. II A. To do this, it suffices to show that

exp(itH)y* () = * (h,) exp(itH,) for hc §.
First we need some lemmas.

Lemma 1. 4: 3, (k) exp(itH ) = exp(itH ), (k) for he$,
where h,(x)=h(x+¢).

Proof:
b (k) explitH )=c, fds h(s)exp(isH,) exp(~isH,) exp(itH,)
=c, [ ds h(s) exp(isH,) exp[ - i(s = )H,]
=c, | ds his + tYexpli(s + )H,] exp(- isH,)
= exp(itH,)c,, | ds h,(s) exp(isH,) exp(- isH)
=exp(itH )¥,(h,).
Lemma 1L 5: ¢(h) exp(itH) = exp(itH,)p(h,) for ke §.

Proof: Put T, =4(h) explitH), T,=exp(itH)¥(k,), and
D= linear span in K of {[exp(iR,)]| F = L*(IR?) and has
compact support}. We claim that D is a core for 7, and
T, and that T, and T, agree on D. From this it follows
that T, =T,.

From the construction of ¢, D.is a core for ¥(k,) and
hence for T,. To show that D is a core for T\, it suffices
to show that exp(itH): D225 D. Let [exp(iR;} < D.

Then F has support in S, for some bounded open set S
and

exp(itH) [exp(iR )]
= {exp(iR,) explit dT(ux )] exp(- iR,) exp(iR)}
= [exp(- 5iIm(r, F)] exp(iR,) exp[it dT(1ix )]
Xexp(iRp_,)]
=[exp[- i Im(», F)]exp(iR,) exp iRy itu, (Fory))
.. explitH)[exp(iRy)]
=[exp[- 3 Im(r, F)exp[ziIm (v, exp(ituNF ~ #))
X eXD(iR, 1 qp 1) (por) ]
and the right side of this equation clearly belongs to D.
Thus exp(ifH) carries D into D. If we put
G=exp[—itu] (F-v)+r

and
G' =exp[3iIm(r, G)]exp[ - i+, exp(itpu)(G — )] expliR,),

then [G’] € D and the above calculation shows that
exp(itH)[ G’ =exp(iR,). Thus exp(itH): D <8t D and D
is a core for T;. Now we show that 7,1, = T,l,.

Let [A]= D. Then by the construction of i, ,(k,)AA,
— (h,)[A] strongly. Since exp(itH,) is bounded,
exp(itH )b, (R JAN, ~ exp(itH)4(n,)[A]. Again, by the
construction of ¢,

$(h) expliR,) explit dT{uy )] exp(—iR,)AA,
— w(h)exp(iR,) exp[it dT (11x 5)] exp(~ R,)A]
strongly.
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Since exp(itH,)AA, =exp(iR,) exp[it dT'(ux ¢)] exp(- iR, JAA,

for sufficiently large » and exp(itH)[A]={exp(iR,)
xexplitdT' (uxg)exp(—iR A}, it follows that y,(k)
xexp(itH )JAA, ~ y(k) exp(itH)[A] strongly. By Lemma
II1. 4, y (h)exp(itH,)AA, =exp(itH,)y,(h,)AN , and taking
limits on both sides, it follows that (k) exp(itH)

= explitH (k).

Theovem II1. 6: exp(itH)Y* (h) = y*(h,) exp(itH,) for all
he§.

Pyoof: This is the adjoint of the equation proved in
Lemma III, 5.
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SU(6) isoscalar factors for the product 405+<56-56, 70*
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SU(6) isoscalar factors for the product 405X 56—56, 70 are calculated. SU(3) isoscalar factors for the

products 27X 10—10, 8 and 10X 8—8 are also tabulated.

I. INTRODUCTION

The SU(6) symmetry group was first found useful for
the classification of hadrons in the 1960’s. It has re-
cently been extended by Melosh! to apply to matrix ele-
ments of currents between hadron states. Following the
ideas of Gell-Mann, the currents are postulated to be-
long to irreducible representations of an SU(6) of cur-
rents, while the particle states are classified by a dif-
ferent, constituent SU(6). These two different SU(6)
symmetries are connected by a unitary transformation,
the Melosh transformation., Melosh explicitly construct-
ed this transformation for the free~quark model. The
algebraic properties of currents transformed by the
Melosh transformation have been extracted from this
model and applied to physically relevant matrix ele-
ments. This method removed the inconsistencies
which appeared in old SU(6) calculations of several axial
coupling constants and the magnetic moments of the nu-
cleons.! Gilman, Kugler, Meshkov and others,? used
PCAC in addition to the algebraic properties of the
Melosh transformed axial vector current to satisfac-
torily predict pionic emission amplitudes for the decays
of mesons and baryons. Gilman, Karliner, and others, 3
also found that the application of the Melosh transforma-
tion technique to real photon emissions from baryons
and mesons is consistent with experiment.

In each of the above applications, the basic technique
is to use the Wigner— Eckart theorem to calculate a
particular physically relevant matrix element. Thus,
the matrix element of an operator between two hadron
states is the product of appropriate SU(6) and angular
momentum Clebsch—Gordan coefficients, times a re-
duced matrix element.? For each of the above applica-
tions, the Melosh transformed currents belong to 35
representations of SU(6). The baryons are classified
in 56 and 70 representations, and the mesons form 35
representations of SU(6). The appropriate SU(6)
Clebsch—Gordan coefficients for these applications have
been calculated by Carter, Coyne, and Meshkov, * and
by Cook and Murtaza.?®

If one now wants to apply this technique to current-
current matrix elements between baryon states which
occur, for example, in nonleptonic weak decays, higher
representations which originate from the product 35X35
must be considered. Explicitly, the product 35X 35 is

decomposed into the irreducible representations:
35X 35 — 1+ 35 + 35’ + 189 + 280 + 280 + 405, (1.1)

The only representations in (1. 1) which will contribute
to a matrix element between baryon states belonging to
the 56 and the 56 or 70 representations are 35 and 405.°
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In this paper, the Clebsch—Gordan coefficients for the
product 405X56 —~56, 70 are obtained so that such cur-
rent—current processes may be treated in full. In Sec.
1, the method of calculating the SU(6) isoscalar factors
for the product 405%X56 —56 and 70 with appropriate
choice of phase is explained. In Sec. III, the SU(6) iso-
scalar factors for 405x56 —56,70 are tabulated. SU(3)
isoscalar factors for the products 27xX10—~10,8 and
10%8 —8, which were used in the present calculation,
are also given in Sec. 1L

Il. METHOD OF CONSTRUCTION

A given SU(6) representation may be reduced accord-
ing to the subgroup SU(3)XSU(2). In terms of the spec-
troscopic notation A?5*1, where A is the SU(3) repre-
sentation label and 28 + 1 is the SU(2) spin multiplicity,
the 35, 56, 70, and 405 representations have the follow-
ing SU(3)XSU(2) contents:

35=8%,81,1% (2.1)
56 =10, 87, (2.2)
70=8%,10?,8%, 12, (2.3)
405 =27°, 27,271, 10%, T0°, 8°, 8%, 83,81, 1°, 11, (2.4)

Wavefunctions for these SU(6) representations are writ-
ten using the 6 and 6 representations ¢, and ¢°, respec-
tively defined in Table Al, Appendix A, A given wave-
function within an SU(6) multiplet may be classified ac-
cording to its SU(3) X SU(2) quantum numbers,

|A; YII,; S Sy), (2.5)

where Y, I, I; are the hypercharge, I-spin, and third
component of the I-spin, respectively, and S, S; are the
spin and third component of the spin. The relative
phases between wavefunctions within a given SU (3)
multiplet are chosen to agree with the phase conven-
tions of deSwart.’ The relative phases of the wavefunc-
tions within a given spin multiplet agree with the
Condon—Shortley phase convention for SU (2).® The wave-
function of highest weight in successive SU(3)XSU(2)
multiplets within a given SU(6) representation is deter-
mined by requiring orthogonality between states with
the same additive quantum numbers, Y, I;, and S3, and
that the traceless condition for each representation

be satisfied. For example, the 405 wavefunctions must
have the following form:

o dgq Heta't - 5 2 g g He 'y + S aiant amd '

+ 0 g g, Hata™ + 8 qiq .t la*a ™

+ 25 (0305 + 8180 21 da,aat e, (2.6)
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TABLE 3.1, SU(6) isoscalar factors for 405 X56~~ 56, 70

275 x10¢ 279x8 278 x10¢ 273 x8? 27ix10t 27! x8 10 xg? T x10t  T0°x8 eSx10t (@ xe?), (8°x8h),
56
104 17—5 —2s = -2/1575 WENSE 2/T4/15/3 4/Ta/45 -2/7/45
g  VI4/3V5 J1d/15 V7/15 V14/30 V7/3V15 -2/7/3/15 vT/3/15 VI4d /95
70
8 V3/3Z _VE/6VZ V5/3T -1/6F % VE/WE 0 0 VE/NET VENST - 5/1803
10 VT/3VE VT/3T0 2/3/5 2/3VI0  2/%E %
8 _VB/3T BV, —U/6T —V5/6/3 —V5/33 B/ —VB/9E
1? —2V5/3Y3
83 x10 (sf,xaz), @ x8%), 8} x10! B} <8y, (8} x8), gix10t  (g!x8%), (81x8), 1°x10* 1% xg? 11 x10% 11 x8?
56
100 0 -7 /1573 - 2V7/15/3 - 2VT4/15/15 2/7/45/5 VT/9E V2 /45
8 —2/7/3V30 0 0 2T /15/3 —2/7/15/6 0 ~4/7/45/2 —V14/95 -1/92
70
gt 0 ~VB/6/8 1/6/6  —VB/E ~1/4F V5123 o -V5/18v2
100 © -1/3/3 —2/3/30 ~17/6/30 1/18/10 V5/H2
8 —V5/3V6 V5/6v3 = 1/6V3 /243 ~1/12/8 V5/12/6 ~7/36/2  -5/5/36V2 -J7/18/2
1? -YZ/3/3 V5/6V3 -V5/6
where {g,9,}=q,q; +4,4;, with the traceless condition R R’ R" A A A >
A,S A',S'|A",S") \YI, Y'I'L, Y"I"I}

2 =0, (2.7

As seen in (2.4), 405 contains 8? twice. The state
[8,;011;11) is chosen to be the simplest state consistent

with the required orthogonality and traceless conditions.

185;011;11) is then determined by requiring, in addi-
tion, that it be orthogonal to [8,;011;11). The relative
phases among different SU(3) X SU(2) multiplets within

a given SU(6) representation is arbitrary. The phases
of the wavefunctions within the 35, 56, and 70 repre-
sentations are chosen to conform to Meshkov’s revised
phase conventions® for the table of SU(6) isoscalar
factors for 35xX56 —56,70. This table is given for
reference in Appendix C. The highest weight wave-
functions, themselves, for each SU(3)XSU(2) multiplet
in 35, 56, and 70 are listed in Appendix B. The present
choice of relative phase for the SU(3) X SU(2) multiplets
within 405 is also made explicit in Appendix B by list-
ing the highest weight wavefunctions for each
SU(3) X SU(2) multiplet within 405. The rest of the wave-
functions can easily be constructed by applying the gen-
erators I, V,, and S,.”

SU(6) Clebsch—Gordan coefficients can be written in
terms of the product of an SU(6) isoscalar factor with
SU(3) and SU{2) Clebsch—Gordan coefficients. For the
product:

|R;A; YII,; SS;) % |R'; A", Y I'T; S'SY)
. ]er;Arl; Y"I”Ig’; S”Sg>,
where R, R’, and R” are SU(6) representation labels,
and the others are SU(3)XSU(2) multiplet labels within

each respective SU(6) representation, the Clebsch—
Gordan coefficient is written:
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X (8S55’S3, S”SY). (2.8)
The first factor in (2. 8) is the SU(6) isoscalar factor
to be determined. The second factor is the full SU(3)
Clebsch—Gordan coefficient for AXA’ —A” many of
which have been tabulated by McNamee and Chilton, 10
The third factor is the usual SU(2) Clebsch—Gordan
coefficient.® For the product 405x56 —56, 70 the addi-
tional SU(3) Clebsch—Gordan coefficients for the pro-
ducts 27x10—~10, 8 and 10x8 —~8 are needed. These
coefficients can also be expressed, in terms of iso-
scalar factors times an SU{2) I-spin Clebsch—Gordan
coefficient, as

A A’ A”
Yi, vy'rrn, Y
A AT A7
= (YI Y'I/ Y”I”) (Ilglllé, I”lg). (2' g)

The SU(3) isoscalar factors for 27x10—10, 8

and 10X8 —8 were calculated according to the method
of deSwart.” They are listed in Tables 3.2 and 3. 3 in
Sec. 3.

The SU(6) isoscalar factors are found by writing rep-
resentative wavefunctions in each of the SU(3) XSU(2)
multiplets of 56 and 70 in terms of the product wave-
functions of 405 and 56 and the Clebsch—Gordan coef-
ficients given in (2.8). The unknown SU(6) isoscalar
factors are determined by operating on these expres-
sions with the SU(6) H, and H; operators defined in Ap-

pendix A, In particular, the expressions
H,|10;1 (2.10)
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TABLE 3.2 SU{3) isoscalar factors for 27x10—10, 8

3
(0,2) (1 R 5)

(8 (3) (1) ew

Yyl (0,2) 2,1) (0,1) (0,1 0,1)
3 1 3 3 1
YT T (15) 0,10 (0,1 (_1, 5) £1§> 0,1 ( 1, 5) 20 1.2 0D <_1,—>
10
(1, g) 5/37 5VZ /371 VI0/3V7 —V5 /37
©,1) 52 /N7 " &5/9/7 10WZ/HWT Vio/3VT vZ2 /Y21
1, L
*2 2TV /3/21 4/37
(-2,0)
8 (o1 v16/9 45 ~vi0/9 vZ/3 ~JT0/5/3
(1, %) ~V5/3 —2E /33 = 1/3/5
(—1,%) V2 /33 2/3V5
{0, 0) ~JVZN3E -2/V15
1 1 1 1 1 1
o (-2,0 2,1 (1, 2) (1,5) <1 5) (—1, 5) <—1, ) <—1,—) 0,00 (©,0 {,0 (0,0}
3 L 3
Yoo <1'2) D e (‘1’2) -2,0 (12> ©,1) (-1,%) (1-3) 0,1) l 1%) 2,0
10
( , g) a3/ 1/3/7
©0,1) 2/W7 -8/9V7 -5/H7
(_ 1, l) 2/5 /347 2 /BT VE/3/E ~1/3V7
-2,0) ¥10/v21 22 /21 INT
8
(0,1) -1/¥5 4/95 4/95
(1, é\) VZ /3T
(_1, l) 2 1//T5 4T /3T ~2/373
(0,0) ~1/¥15
Hy|8;15 53 )= [8; 13554 5), (2.11) _
, 31 3. TABLE Al. Basic representations 6 and 6 with eigenvalue
Hyl8;15 454y = (- 4v2/3) [10;153;3 3) assignments for H, and H;.
+3 5 18 1:4;345), (2.12) Name } YII,; SS3) Hy Hs
for 56 and @ =p 1535 53 1 1
H, 81543 =[8;15 539, (2.13) a2 = 33— 4 22 -1 1
- 2 i1 -
H, 10,1334 5= [10;13 353 D), {2.14) =N ' : 00; 2? 0 2
a=p, 1533 34— 2 -1 -1
Hy|8;13 545 =813 3,59, .13 " L
gs=n, 153-3:3-2 1 -1
H,|1;000; 4 3y= (- 2/3)(]8; 010; 2 ) + | 8; 010; 3 1)), 2= A, |~200; 34— % 0 2
C19 g, TR -
H,110;011; 5 3)=H,|8;011;3 3) = - H,|8; 011; 3 §), 7-m TR ) 1
(2.17) =X - 15005 3-% 0 2
for 70 are sufficient to determine all the isoscalar ¢ =5 C1-ii- i 1 1
factors. These factors are tabulated in Table 3.1 in s - 1111 ) .
Sec. III. Each row of isoscalar factors is normalized = R R -
separately. The leftmast isoscalar factor for the 56, =N £ 00; 39 0 -2

10 multiplet and the 70, 8' multiplet are chosen to be
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TABLE 3.3 SU(3) isoscalar factors for 10 X8~ 8

v (fl,g) &1,%) 0.1) 0,1)

o v (3) () (@) eo

Y1 Y, (0,1) (1%) ©,1) (1—) (_1, 5 0,0 ©,1) (_ 1, %) ©,0 (_1, a
8 (0,1) V2 VI5  -VZAI5 15 -VZ/NT5 -
(1 : %) 145 -1/7% INE —VZNE
(—1, l) 25 15
(0,0) v3A5 VZNB
positive. Expressions (2. 12), (2.16), and (2.17), then [xd, xt]= 6] x} - 8IX]. (A2)

determine the relative phases of the remaining rows.
These expressions also provide an internal check on the
normalization of each row.

I1l. RESULTS

Table 3.1 lists the SU(6) isoscalar factors for the
product 405x56 —56, 70. This table has been con-
structed to agree with the revised phase conventions
for the isoscalar factors of the product 35%X56 —56,
70.%? When necessary, this revised table for
35%56 -56, 70, given in Appendix C, should be used
with Table 3.1, rather than the table given in Ref. 4.
Tables 3.2 and 3. 3 list the SU(3) isoscalar factors for
the products 27%10—10, 8 and 10X8 — 8, needed in the
construction of the full SU(6) Clebsch—Gordan
coefficients.
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APPENDIX A: GENERATORS AND BASIC
REPRESENTATIONS OF SU(6) GROUP

The 35 generators of SU(6) can be written!! as X7,
i,j=1,2,...,6, with the condition
6
2 X;=0, (A1)
1=
and the commutation relations

TABLE B1. Representative wavefunctions for 35, 56 and 70
representations. For 70, @;; , =4;4;9 +4,;9:9, — 9%9;9; — 9;9%9;-

| A; YII; SSy

35

[8; 0115 11) = g(¢°

18; 011; 00) =~ A A Z) gy + q4q°]

115 0005 11) = (=1 V3)[qy4* + 424° + g34°]
56

f10;13%; 3 = 41914
18; 011; 33 = (1/3V2)2 (geq19: + 41950 + 910196
~(uaq + U+ BU + DB+ BUGF Ga3a))

The familiar SU(3) hypercharge, I-spin, V-spin, and
U-spin operators are written in terms of these genera-
tors in the following way:

TABLE B2. Representative 405 wavefunctions {g;q;} =q;4; + 94

| A; YII3; SSp

127; 0225 22) = 1 14°q°

18; 011; 22) = 1 V200 [2{qyq} ¢°4° + 24191{4" "} +{arasHPdtH)

11; 000; 22) = A V28 (2¢9,4'¢" + 20:0:0°0" + 243934°°
HaaHd' @ HaaHe ¢ H{ag} {4 dh

127; 022; 11y = 1/2){gy94}¢°a" + asar{d o’}

(1051 %% 11 = /2 g ada’} - qaddaH

110; —1 g g; 11) = 0/ gs94t0°9° ~{a195}4° ¢

18,5 011; 11y = A VEB)2q101{q' 0™} — 210 d '} + A manta’s®
-2{q,q5}¢°¢° +{as0:}{a°¢"}
~{a4sH %) ~a19:H{ P " HayaHa* e

|85 011; 11) = (1/v380)[29,4¢{d' "} - 8 {d o'} — Blapas} P
+2{q195}0°° - a1 7’} - 3{qiaH {44}
- g9 e} HaaHa ¢ - HayasH{d o}
+HaigsHd a’N

127; 022; 00y = A VT2 (291014 +2qs048° ¢ HaaHa ¢ N

18; 011; 00)= (1//960)[2qy9,{¢' %} + 2{a1 } P + 240l a®)
+2q g} ¢ HayasHi ™ + {maHa' 6%}
Hagi it HaasHE O Haq {467
+HasaeHa ¢t - HaraeH{ P o} - e e’}

+8{q,qsHd’ ¢’} + 8{as s {d* N
11; 000;00) = (1/12V14)[4q114' ¢ + 4’ @ + 4y T +daquaud’ s

+445954°0° + 145050°0° + 2 a1 ' ¥} + 2 q asHa'd}
+2q0Hd' ¢*} - slarasHa' 6} - 5la,q6He'd}
+ 2 @205 {0} - e H P ¢ + 2 ma:} P 6™}

e uns - a2’} - Slasad P’} - SagaH ')
. 1. 33y =

|8 L R e +2faaHe'a + HasasHa o)+ HayagH{a' )

; Lo22y 227 P11,4 iy ) i
185 0115 2) =~ (1/3V2) @1y ,5+ @3, + Puz ] +2{as9,Ha° "} + HanasH A o' + Hay e}
[1; 0005 38 == (1/6V3) (20,1 + e, 1 + P16+ 2P15,3+ 53,1 + Pi13,5 +Haat{e d’ + HaaeH P+ HazqHa' o'}

2034 5+ Oy3,2 + P32,4] '
' ' ' +Ha39:H{P a%)
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Y=- (x}+x5), (A3)
L=X}+X, (Ada)
IL=X}+Xx}, (Adb)
L= 400} + X - X - X9), (Ade)
V.=X3+ X5, (A5a)
V.= X} + X, (A5b)
Vy=2(x{ + X} - X3 - X9, (ASc)
U,=x}+X3, (A6a)
U.=X;+ X8, (A6b)
U, =4(X3+ X8 - X3 - x2). (ABc)
The generators of spin are given by
S,=X}+x3+ x5, (ATa)
S.=x} + X2+ X3, (ATb)
Sy=X} + X%+ X3. (ATc)

The basic 6 and representations, expressed as ¢y, ¢',
1=1,2,...,86, respectively, are given in Table Al along
with their eigenvalue assignments. The commutation
relations of the generators with these basic represen-
tations are:

[Xi"’ qt]:‘all. q; — %51 qys (A8a)

(A8Db)

A complete set of commuting operators, linear in the
generators Xj, is given by Y, I3, S;, H;, and H; where
H, and H; are chosen such that, ¥?

H,=+4LS,,
H;=+6YS;,

(xi,q"]=- 8} ¢’ + 184"

(A9a)
(A9D)

for the basic 6 and 6 representations, The positive
sign is used for the 6 representation and the negative
sign for the 8 representation, In terms of the genera-
tors Xj, H, and Hy are written:

H4:X}‘X22"X§+ng
Hy=Xj+X} ~ 2X} - Xj - X{ +2X3.

(A10a)
(A10b)

APPENDIX B: REPRESENTATIVE WAVEFUNCTIONS
OF HIGHEST WEIGHT

Table Bl lists the highest weight wavefunctions, writ-
ten in terms of the basic representations ¢, and ¢*,
1=1,2,...,6, for each of the SU(3)XSU(2) multiplets
in the 35, 56, and 70 SU(6) representations, respec-
tively. The relative phases of these wavefunctions are
chosen to agree with the table of Carter, Coyne, and
Meshkov* with revised phase conventions.? (See Appen-
dix C.) Table B2 lists the highest weight wavefunctions
for the 405 representation.

APPENDIX C su(s) ISOSCALAR FACTORS FOR THE PRODUCT 35 x56— 56, 70 WITH REVISED PHASE CONVENTIONS?:?

8 x10! 8t x10! 1 x10t (8% x8?), (8% x8?), (8! x 8%, (8! x8?), 13 xg

56
104 2/3 -2/V15 -1/3 -2J/2/3/5

8 2/3 —J2/3 2v2 /3V5 0 -V2 /15 ~-1/3%5
70

8 5/4/3 ~V5/4 ~V5/4/3 -1/4/3 1/2V6
10 V2 3 -1/V6 ~1/2v% ~1/2v2

8 V5 /2/3 V5 /48 ~5/4J6 —V5/4/2 1/4/2 1/2v3

12 v3/2 -1/2

*Work partially supported by the U.S. Atomic Energy
Commission.
YJunior Fellow, Michigan Society of Fellows.
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Clebsch-Gordan coefficients of magnetic space groups
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We have obtained sets of homogeneous linear equations in the Clebsch—Gordan coefficients for magnetic
space groups in terms of the matrix elements of the irreducible representations of the little cogroup of the
linear subgroup of index 2. Depending on the types of the co-representations in the triple product, 18 cases
arise. These 18 cases can be divided into six categories. We have given explicit forms for one case in each
category and have indicated how the other cases are to be treated. The formalism has been developed for
projective co-representations so that both the vector and the spinor case can be treated.

1. INTRODUCTION

Clebsch Gordan (CG) coeificients for the crystallo-
graphic point groups "% have been used in solving many
physical problems, e.g., spectra of paramagnetic ions
in solids, ** paramagnetic spin Hamiltonian and relaxa-
tion phenomena, *~? and many other problems. %!l I
obtaining the selection rules for transitions in crys-
tals, 2718 jt is the coefficients in the Clebsch Gordan
series !? that are required.

Methods for calculating the CG coefficients for space
groups have been treated by many authors, 20=22 and
Birman and his co-workers have calculated 3% the CG
coefficients for various space groups.

For magnetic groups *? there is no simple formula,
like the Wigner formula!® for linear groups, for ob-
taining the CG coeificients. Recently some work has
been done?®-3! in this direction and there are now dif-
ferent procedures for obtaining the CG coefficients of
magnetic groups. Here, we give explicit expressions
for the linear equations in the CG coefficients of the
magnetic space groups from which the CG coefficients
can be calculated. These expressions involve the matrix
elements of the irreducible representations of the little
cogroups belonging to the appropriate kX vectors
characterizing the co-representations of the magnetic
space group. 2’

In Sec. 2 we give the matrix elements of the irre-
ducible co-representations of magnetic space groups in
terms of the irreducible representations of the little
cogroup of the linear space group of index 2. Finally,
in Sec. 3 we give explicit expressions for the linear
equations in the CG coefficients for one case from each
of the 6 categories that arise. We give the formulas in
terms of projective co-representations, 2~ so as to
be also applicable to the case of spinor co-representa-
tions of the magnetic space groups.

2. IRREDUCIBLE COREPRESENTATIONS OF
MAGNETIC SPACE GROUPS

The magnetic space group
M=G U ayG, a%eG, 1)

has the linear subgroup G (which is a space group) of
index 2 consisting of elements (n+t(x)|u), where x is a
proper or improper rotation, n is a lattice translation,
and t(x) is the fixed nonprimitive translation, which may
be zero or nonzero, associated with #. The antilinear
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operator g, is given by
a,=6(cly), (2)

where @ denotes the time reversal operator which com-
mutes with all space operators. The co-representation
theory of M has been given by Bradley and Davies, 2’

and we summarize their results in the notation we shall
use here. The little cogroup of G corresponding to a
vector k in the first Brillouin zone is denoted by K(k),
and the left coset representatives of K(k) in G/7, where
7 is the primitive translational subgroup of M and hence
of G, are denoted by a;, ¢=1,2,...,7. The various ir-
reducible representations, which may be projective ones
if k is on the surface of the Brillouin zone, ¥ of K(k)
which appear in the irreducible representations of G are
denoted by %

T™W), m,n=1,2,...,p.

In order to treat spinor co-representations, we give
the general form of the irreducible co-representations
in terms of the projective co-representation of the mag-
netic space group, belonging to the factor system
w(a, B),

D(@) D)™ =w(e, H'**'D(ap),
wia, B)"w(aB,y) =wl(a, By) w,7), (3)
lw(a,B)! =1,

where for any complex number or for any matrix 4,

A ifacG
[e] _ ’ ’
A —{A*, ifoeeM-G. @

For the spinor co-representation of M, the factor sys-
tem w(a,B) is connected with w(a, 8), the factor system
of the linear group

M’=G U (¢|v)G, (5)

corresponding to the spinor representation, in the
following manner:

Wy, uy) =Wy, uy), @y, Grvuy) = @y, vuy), ©)
W (Ovuy, u)) = wlyug,uy), w(@yuy, 8vug) = — wlyuy, yu,).

This automatically takes into account the fact that 8*
=-1 for half-integral spins. With this notation for
w(a, B), D(6%) will be equal to D(x) in the expressions
used later.

We now give the expression for the (m,x)th element
in the (i,7)th block of the irreducible co-representations
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of the magnetic space group for the three different types
of co-representation.?’ The following notations have been
used:

t(e;) =a;, ak=k,,

T (a;'ua,)=0, if o] 'ua; ¢ K(K),
®(i,7, K t@),u) = exp{ik, o [t() +ua, - a,;]},
éz(l,], k; t(u);u) = @3(1"]: k; t(u),u)

= exp{ - iyk; o [t(w) +uc - c +uya; - va,]},

®4(i, 4, K; tu), u) = explik, « [t() + uc + uyc +uve +ur’a,; - a;l}.

()

The matrix P (cf. Ref. 27) appearing in the following
equations satisfies

I,E B (jlua ) ®,(4,57,k; tw), )Py €Xp(ik; + 1)
=w(u, 6v)* w(6y, v uy) JZ; Pim it
XTptl@d v uya)* « &(57,5, k0 wy), v 'uy)*
X exp(~ ik +n), Yu,ni,m,j,n,
and
(PP¥);, jn=2w(8Y, 07) Thla;'Va ;)
X explik; « (¢ +ve +via; - ;) ], (8)

with the upper sign for co-representations of type (a)
and the lower sign for co-representations of type (b).
The criteria for Wigner’s classification of the three
types of co-representations (a,b, or c¢) for magnetic

space groups have been given by Bradley and Davies. '

Type (a)
DY L+ ) [u)

= F;‘;(a;‘1uaj)¢1 (i)jy k; t(u) >u) exp(iki ° n))
DY [ +t(w) |u)(c|v)6]

= ij‘Z}{ Wy OY)P jops, 1 Tt (a7 uc o)

X ®(i,j7, k; t(u),u) exp(ik; sn). 9)

Type (b)

(n+ tlw) lu)

D ko
reim, r+in

im, Jn(n + t(u) | )
=T (a;lua ;)8 (i, i, k; t), ) exp(ik; »n),
DY, L+t [u)(c]r)0]

== Dak:lnwm [(n + t(u) ‘u)(c l')’)e]

= %—{,w(u’ 97)1‘)3%
« exp(ik; e n),

*,in F;‘;(a?ua;’)‘lﬁ(i,j', k, t(u):u)
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DY ..+ t() |u) =DF%, 50+ t(u) |u)
D sl +t@) |u)(e [v)6)

=D im, el (0 + () [u)(c [¥)6] =0. (10)

Type (c)
DEe L (n+t(w) |u)
= Frknl.;(a;luai)q:'l(i:j) k; t(u)a u) exp(iki ° n),

DY e+ t) |[0) = w (e, 87)* w(By, v uy)

X Ioe(asty uya )* @,(, 7, ; tw), )

X exp(- ivk; om),

D&, L+ t) |w) (e | 9)0] = w(By, ¥ luy)
X T (aity luya ) *

X &4(2,7,k; t(u), u) exp(- iyk; e n),

DY L il(n+tw) |w)(c |v)8] = w(6uy, 8y)
I"k”(a uyla P

X ®,(i,7,k; tlu),u) exp(ik, on),

DX im0+t [u) = DX (0 + t(w) |w)

=D% [0 +t@) u)(c|r)e]

=Dyl imrein [0+ t@) |u)(c|7)6]=0, (11)
with 4,7=1,2,...,7, and m,n=1,2,...,p.
The I'™ () matrices satisfy the relation
T (o )T ()
= w{pty, wy) T (ugut,) expli(ui'k — k) o t(ae,) . (12)

Zak ef al.® have given the irreducible characters of
'™ (u) for all the k vectors of the 230 space groups. For
single dimensional representations we can substitute the
characters for the representations. For multidimen-
sional representations comparison of Zak’s character
tables and the expressmns exp[z(ul‘k k) o t{x,)] enables
one to use Hurley’s tables®® on projective representations
of the 32 crystallographic point groups.

3. CLEBSCH GORDAN COEFFICIENTS OF MAGNETIC
SPACE GROUPS

We denote by |kpgl) the (g)th basis belonging to the
irreducible co-representation D**. The CG coefficient
(&1 g4l Kol 0q,05 | TsKs 1 5g5l,) connects the product func-
tion 1K, u1q4ly; Kot 9q,1,) with the (g;l5)th function
175K; 18 3q405) belonging to the 74 repetition of the irre-
ducible co- representatmn D"3”3, in the Kronecker inner
direct product D"1*1g DR*2 i.e.

[73k3U3(I3l3> = X ki 11q(ly; By agol, [T3k3ii3f13l3>
01110212

X Ry 1 g1l 13 K gpto@aly), (13)

G.=1,2,...,7,, 1,=1,2,...,p, for co-representations

of type (a),
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qa:1s27'- . ’27’a:
of types (b} or (c).

l,=1,2,...,p, for co-representations

This is a straightforward generalization of the symbols
used in Ref. 31. Here g denotes the block and ! is the in-
dex within each block of the magnetic space group co-
representation. We have suppressed the index w, de-
noting the factor system; it is to be remembered that

wyla, B) = w(a, B) wyla, B), Va,BeM. (14)

If we put the matrices given in Sec. 2 for the co-
representations characterized by the three K vectors
(k;, kq,kq) in Eq. (27) of Ref. 31, we obtain a set of
homogeneous equations in the CG coefficients of the mag-
netic space group. The summations in these equations
will be restricted to elements N}, X, , (k) where

E,;;k) =K(ai'ka,).

Depending on the Wigner types to which the three co-
representations characterized by the three k vectors
(k,,ky, k;) in the triple product belong, the different
cases can be classified in six categories, given in Table
1. We now will give the sets of linear homogeneous
equations in the CG coefficients for one case from each
category. The bases forming the different repetitions of
the same irreducible co-representation have been as-
sumed to have the same transformation laws.

The cases that have been given here, do not contain
any co-representation of type (b). In the other cases in
each category, co-representations of type (b) occur in
place of one or more of the co-representations of type
{(c). To obtain the relations for these cases we make the
following substitutions at the appropriate place in the
relations from that category, given here.

(1) In the argument within A(k), 7k,  is replaced by

- kaza
(i1) w, (o, 6¥)* wa (87, v~ 'uy)Trea(al
X ®y(i,, 70, Ky ), 1) is replaced by
ek (@ilua;,) @iy, jo» Ka; t), u).

)*és(ia!ja’ ka; t(u); u)

-1, =1
o v uya; )*

1,1

r (7 Y luya,

(iii) w,y(8y, v uy)I‘ma,,a
is replaced by

—

Category |. Case 1.
Gy dymy; Ky, poiym, 173k3# 3i3Ms) (f/d3)6j3j§ Ongng

= Ak, +kyi, ~ ki)

TABLE I. Categorization of the equations in the Clebsch—Gor-
dan coefficients for the different types of co-representations
characterized by the vectors k;, k), k; in the first Brillouin
zone that appear in the triple product.

Different Types of co-representations Categories of linear

cases characterized by the vectors homogeneous
equations
k, k, k;
1 a a a 1
2 a a /] I
3 a a c
4 a b a 111
5 a c a
6 b b a v
7 b c a
8 c c a
9 a b b A%
10 a b c
11 a c b
12 a c c
13 b b b VI
14 b b c
15 b c b
16 b c c
17 c c b
18 c c c
u 97) Z F a“a ‘luaj“) (I)l(in:ja; ka; t(u): u)Pgﬂnﬂ,ja"a'

(iv) wa(9u‘}’, GY)FmanZ
replaced by

(@7’ @; )y (igs ja» boa; te), u) is

w,{u, 8y) 25 T e (7 0) B (i, 77, s tt), )P, sy
)
We use the following notation:
A(k)= 1 if k=0 or a reciprocal vector,
0 otherwise,
d,=dimension of the co-representation Dk“““,

f =order of the factor group M/7. (15)

The occurrence of the + sign in some of the following
equations is due to the equivalence of the co-representa-

tion of type (a) with any of the two signs. Consistent
use of either the upper or the lower sign will be valid.

P (40 jor Koy t@), W) T “ua(Ol ua,a><1> (i3, 74, ky; tu), u)* rm nt ! (a3 uar)i<k1li111"1, Ky phojont, l T3Kyh 3 fgng)*

X, 3—\/}.2”2 [(ktﬂyjﬂl:; Kooy | ToRgpt i)
-,
X 5 ( I
u a=1,2
T >ﬁ -1 ua
XA—E/ jin‘,Tzan,j?:nB a—-I_lyZ 4) ( a’] ka’ t(u) u) rma"a (C! a) Pfaﬂ v Jala

X &, (is, 7%, ky; t(u), u)* T 3u3(

i'n ,J3n3

Tua 3)*P, ] .

(16)

The equations resulting from the omission of the second term on the right hand side of Eq. (16) will give the
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relations from which the CG coefficients of ordinary space groups can be obtained.
Category ll. Case 3.
Ry 48975 Ko lh gy | ToRaugigms) (f/dy) B4t Oyt

=8k, Ry, —Kyi) 2 <k1u1,7'1"1§k21127'2"2lTaksl-Lafs”ls);/ (

imprdamy e

I
=1

.. Kgig -
)2 q)] @a;]u: ka; t(u))u) rmana (ai;uaja )

. . k -
x q’l (13’.7§> k3, t(u); u)* I‘ms;g (ai; uaj'g)*

=k, +ky, - Ky ) ; ZZ (Ry 1t 775 Kot oy | TR g7g + 4n8)* 20 walu, 0y) wy(Buy, 67)* 4(iy, js, Ky; t), u)*
171779 v

><1“3 3(oz uyoz )* 2 ( I &, 7% k,; tw), u)F ,,a(a"ucx ja)Pe \)
al, 202 \ea=t, 7808, jgn,

(y b ygymy; Kol gty | T3Rsh g7y + Ggmg) (f/ds) 6, 37Ot

= Ak, Ky, +Yk3z3) 2 (ky 15 Rapiof oty | Tolaps g7g + i) ; w3, 8y) WOy, v uy)*
Iyngs gy

(H D, (P55 70, Koy tln), u)l" a;lua; b @,(is, 53, Ky; t(w), u)* I‘:Ztﬁ;’ (ailyluya 2)

a=1,2

= Akt Foke) D (k1u1j1n1;k2u?j2ng[73k3;437'§n§>*uE w3, )

Jynys Ipmy

(17)

- . . 3 - a2
X w3 (By, ¥y )* Byis, iy, Ky t), u)* Too ey uray) 12“ (1 , @101 X5 ), W) T (ai;uajn)P,.a,,a,jana).
J nl 4

Ak, oy~ ki) Z\j {O‘Wﬂmﬁk2H2f2”2173k3H37’3+73"3>2 ( i, D1 (ia) Ja» Kas ), 1)
T ¥ a=l

Kou, .
X Tt (a7 war; ) ) @4 (i, 5, Ky; t0) , )*1",,,3’;? (@7} ua )% + Byt 31720 Ky of | Tokgp gign)*
a 3

XL wglue, 0y) wy(Buy, By)* 405, 75,Ky; tw), 0)* T 3u?’(C'l u-y o; )*

% Aan-J_:%;? <a=1?2 (00, 7% ko t u)l" a“ ual“)Pj‘“n“,fun)]
i‘nt, '

=4k +k212+7’k3: ; Zj [<k1#1j1n13kz#ziz"z("'aksﬂsfanﬁg—: w3 (1, By) wy(6v, ¥ ur)*
T "rigy

'
m n ' 2

x@z(ig,jé,k3;t(ﬁ),u)*r3“3( iy uva) ( T ®,(ig jas K t0), 1) Th o (a uozj,,))

(K g Kothgiony | Kot 75+ ini* 20 wylu, By) wy(8y, v uy)* ®5(iys, Ky; tl), u)*

man
373 al, 202

N

XT3 (3t R Yuya ) L, (J},z ®, (i, 7%, Kas t(u),u)I“m“‘:lg(a;iuaja)Pj-a,,a,ja,,l)}:0.

Each case in this category will contain six such sets of equations with appropriate substitutions.
Category lil. Case 5
(Ryfa gy Roth iy | Tokapt gigiity) (f) dy) By 5 S

ba) . . . fn .. ~Eqta
:A(k1il+k2i2_k3i3)j Z—; [(k1H1J1”1§k2H272"2‘T3k3M373"3>%1 (a:lIIZ ¢1(la,1a,ka;t(u),uirm;a( fua; )>
170727 :
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X & (fs, j3, ky; t(w), u)* T s (@ ua,.)* + (K gy Koptamy +j2n2l73k3“’3j§né>* ? wg (e, By)*

manf

N . . . x -
X wy(Ouy, 6y) | %’,3 . @y, 7', Ky tw), u)®,(iy, 55, Ky; t(e) u) ®,(i5, 5%, Ky; tlw), u)* I";;‘l (aj ua 1)
itnl, jon

Koty , - *
X Tt (iur ey, yres Nafluapg)*Ply Pl 3'j3"3]. (20)

mq n3 #ntsgqng o Jon
(Rypeqd 5 Koph g7y +gimy | ToKypgigma) (f/dy) Ojyit Ongnt
= A(kul - Ykziz - k3i3) Z; [<k1llt71n1; il o7y + ot | ToKapigigng) 20 wy (e, 6¥)* wy(8y, ¥ uy) @y (iy, 5y, Ky; ), )
171779 ¥

X By iy, n, Ky; t(), u) D, (5, 75, Ks; tu), u)* I‘mi‘,‘,i(a;:ua,-l)r‘ PVl

ey tuya >

i)
xT, 3u3 (0‘-1 340 )% + &y i Kol ojon, ITak3M37$”§>*Z; wy(, 07)* wy (87, v 'uy)

x 17\3 s @ (61, 7", g5 tw), ) Dy(ly, 7a, Ko; tee), w)@y(d3, 77, Ks; tlae), 20)*
Jint,3¥n

x 1At ojlua k2“2 ajlyt * -1 * 3
e laftua )T (g, uray,) 1",,, ,,3(Ot U0 13) Pj“ll"lea 3’133] . (21)

Each case in this category will contain 2 such sets of equations.

Category V. Case 8
(g g3, my; Kol gigmy | ToKypt gigmy) (f/ds) 8; 335 Ongnt

i . . . . Kobg o o
=k, thy, —ky ) i [<k1#01"1§kzﬂﬂz"2|73k3#373"3>? (G_I;lz ®1(ias for Kaj tw0), %) rmt‘:ra(aiiuaja))
1"1772" o

X &, (i3, 74, Kg; tl), u)* Fms‘;%(a uaj%)* + Iy 7y g Kot oy + oty | 75y g5 0)*

xzu‘, w51, 67)* wy(Buy, 6v) 323 <a 1;12 4 (igsdas Ka t(2e), u) F"‘aa o) uy a; ))
jon '
X By (ig, 7, ky; ), u )*1“3 (afua3)* P2, ] (22)
¥} ﬂ3

(K 111y g Ryl g7y + dgmy | TsRgpt gigms) (f/dy) 0 #0nym

=8k, = vy, - Ky) \ Z]’ (<k1“1j1"1; Kypt g7y + i | Tskap gjgny) LP Wi, By)* wy(8y, v7'uy) @y (s, 7y, Ky tut), u)
1" 72"

X &, (45,72, Ky; tlw), u) ®,(is, 14, Ky; te), w)* F 1 (ai ua,l) 1",,,2 ,,z(a 1y"uyoz ST ,,cz(a;;ua,.s)*
+ Ky 7y + Gy Kyl of ity | ToRgpgignd)* ,.E w(Buy, 0y) wy (87, ¥ 'uy) wylu, By)*
X 323 D48y, 71, Ky; te), u) @3(0s, 7a, Ky; t), u) ®4(i5,5°, Kg; tlu), u)*

Jon

XTI f 1(ae tuy a,l)l" (a'ly'luya,2)*r‘ o 3(oz uaz,s)"‘Pj’s"3 , ">. (23)

ey g7y +dymy; Koptyiym, |73k3# slymsy) (f/ds) 5131'35n3n'3

=80k, Ty, — Ky (<k1um sy Kol ofn, ITskeH:i"s)? wy (e, 8Y)* w1 (0y, v uy) Byliyy i, Ky; tl), u)

Iinyrigny

xd (22’ ]2’ kZ’ t(u)’ u) ® (zS’Jév ka, t(“)> u)* r 1“1 :}7-1uyajl)* r"?u?‘(a ua ) r:?::;;z(a;;uaj%)*
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(R iy Kopto7y + gy | TSRy g i) ? wi (07, Y uy) wy(Buy, 6v) wylu, 7)*
x 3Z>3 ‘1>3(i1,j1,k1;t(u),u) ‘134(1.2,]'2,1{2; t(u),u) ‘1’1(7:3,]'3, kg; t(u),u)*l" o I(Gf '}’-]7/170111)
i“n

k
XT ks 2(oz'1uy a; )F 3“3(01 uajs)*P b >
2 2 m3" J n ,]37‘1

g7y g Ryl g¥y + Gty | TRyl gigmg) (f/ds) 04 Onmt

=A(- 7k1i1 - ?’kzi2 - k3i3) X ; ”Ej . [<k1!l17’1 + jyny; Roth oy + sy | Tsksusfs’?s); w3, BY)* wy(0y, 7 uy)
1"1179%

«l, =~ P k. -
x(ﬂ By iy, s Ko ), 1) To" iy e )* )<1>1(23,J§,k3; t), w)* T 2" 3as  ua ) *
= 373

+ Ky yfing; Kot ooty |T3k3“3j§n§>* ? wslu, 8y)* wy(8y, v luy) (HEI? ®3(i4, Fas Ky tue), %)

k o k:
-1, - . R 343, -
eraan:(aia'}’ 1“7011“)*> jSZ:,,a @, (5, 7%, Kg; t), 0)* Fm3n3(ai;ua 3)* Pi;ﬂ 3, 1ym 3]

Each case in category IV will contain four such sets of equations.

Category V. Case 12

Ckypgdymnyg; k2H212”’2l7'3k3H3’3”73> (f/d3)d i :’5n !
33

= Ak, +hy, — Ky, ) ; Z; STV kzuﬂ27lz‘73kau3737l3>L <=1'2 B, (as Fas Kaj tle), 20) Fm ne (@Fiua; ))
1" 72"

X o (135.7§’ ky; tlu}, u)* r,,. o (d uczj . )

TN
=400k +ky -k ) o L
1 2 3 J1n1,.1'2n2

. . kiug
X<I>4(zz,]2,k2;t(u),u) (134(7’3’]371{3;1:(“)7“)* Fm1n1(a uo 1) 1—~m2" (CY uy a; )rk ”3(0[ wy @; ) .I nl ,11 1

Ky gy Roptory + iy, I oKt gigniy) (f/d;) 0 3335 Ony

= A(ku'l - 7k2i2 - k3i3) ? (Ryfyf s Kol o¥y + oy l T3Kgli 3j3m) @ wy(u, 0Y)* w,(By, Y luy) (i, 41, ky; t), u)

iqnysdgng

. o S TP T .
X (1)2 (12,]2,1{2;t(u),u)d>1(23,]§,k3;t(u),u) leni(aituaji) Fm2n2(ai2 u'yan) F"'3"'3(ai3uaj§)

=+ A(ku1 - 'Yk2i2 - k3i3) 5 n2—; . (ypyjing; Kopof sty l ToKgu 373 +j§”§>*§/ wy(u, 67)
172

X w8y, ¥ “uy) wy(Buy, 6y)* E ® (g, 5", ky; t), u) D4iy, o, Ko; t(e), u) B4lis, j3, Kg; tle), 0)*

ky b -1 - 3ty
xT 1( ua 1)I‘,,,2,,2(a Ly huye, > T o (@iiuyba )F P

1 Jn,]1n1

(e g Kopgtant, | 7oKyt g7y + igimg) (f/d3) 85514 Ongnt

:A(kiil + kz;'? +‘}/k3,»3) . 2 Ry Fines Kot oi gty |73k31137’3 +j3n3>; wy(u, 6y) ws (v, ¥ luy)*

Ty 7o

.. k - .. k. - -

(1_1;1 9 ‘1’1(1,1,]0, ka; t(u); u) rmaa‘:lZ(ai,l,uaja ) ¢2(237]§’ kS) t(u)’ u)* rn?:;lz(ai;y lu'yajé)

A(k1i1 ki, +7’k3i3) ) E Ryl giqig; Batd oo + Goy |73k3u37§n§)*zu> wi (, 87) wy(Buy, B) wy(6y,y ™ uv)*
Jlnl,J2ﬂ2
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(26)

(27
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x E By (i1, 7", Ky; tu), u) 4(iy, J2, Ko tut), ) @343, 3, ky; tle), w)* T 1(01 ua,1)
sz“z(a uyoz )I‘ (oz -yiuyoz )P“

ER A T

(28)
Qg gty Kold o7y + Ggmig | ToRapi g7y +dgmg) (f/dy) 6 7544 On

=A(k1i1 - Ykziz +7’k3i3) j1"§2"2 Kyl giimg; Kaplovy +dony lTakslis"a +jgng)

X? W, 8y) w (87, v uy)* By, 51, Ky; ), u) ®y(iy, o, Ky; tlu), u) D(i5, 55, kg; t(u), u)*

k

XF,J;:(OG a;)T, 2 RGN LI Nl I“,,. m(a"y*uva )

=iA(ku ?’kmz‘*"}’kma ; Z; <k1li1]1”17k2#272712lTsk3Hﬂ§”§>* w (e, 8Y) wy 8y, ¥ uy) wy(By, ¥ 'uy)*
1n1s Jamy
<I> (21’] 7k1a u)q) (7'2,.72) kz,t(u) u) @3(7'3)]3’}{3: t(u) u)*r 1(0131“‘1:'1)
29
X T kg Z(a"'y‘iu'ya )*1- (a-i.},-lu,ya )Pi1 ) (29)
z 11"1

ARy o, — Ky ) ; E] [(kdidmﬁkz#?jznzlﬁkaﬂa”s +3gng)
1717 72"
XE( 1 & (i) kq; tl), u)l" “(a'lua )<I> (65,78, Kq; tlu),u)* T 3':3(03 uaj,
u

+ (kg yf g Ky o7y + oy | 73kgp gifng)* X uE wylu, 8y) wi(Buy, 6y)*

20, @1(64," Ky ), )

.

X B, (39, jo, Ko; t@u),u) ®4(is, 75, Kg; ), u)* T 1“‘(oz uo )T 2,, (@7 yuv a; )1",,, ny aj! Y Py ; ]
s g

=A(k1i1' T K;,) ; Zg [<k1u 05 Kot o7y + oy | ToKapi g7 + g
1" 2m2

X L wz(u oy)* 0)2(9% 7-1u7)‘1’1(i1;j1; ky; tu), ) ‘I’z(izyjzy ky; t(u),u) ‘51(1.3,]'5, ks; tQe), u)*

><I",,,I1 (@i jua, )r:?z ety Ttuya, )

= . - .
T ariiuc ¥ = K s Katt oy | Tokg ugfing)®
X; w (@, 0y) wy(0y, ¥~ uy) wy(Buy, 87)* T’ (g, 5, Ky; te), u) @g(dy, 4y, Ky ), )

i w7 gt LT "33
X‘1>4(13,]3,k3; t(w),u) le,,l(ailuajl)rmznz( 'V uya; ) m3n3( u’ya ) PJ1"1“711
=0k +ky + Ky ) “72? [(k1HL71"1;k2H272"2’Tsk311373"3>=u2 wsu, 67)
1712727

Xw3(87y 7-1747’)*(“5[2 (I)l(iaaja’ka; t(u);u) r a a(a ) ‘I’z(ig,jé,k:;; t(u),u)*

XT 33 2(01 Y u?’aj%) + (Kt gd g Kot o?s + jony 173’33#37’3 +jni)* ? w, (u, 67) wy(Buy, 6)

xwa(e?’,‘)"iu‘}’)* ?1 ‘1’1(i1,j1,k1;t(u),u)‘l’4(i2,j2,k2; tu), u) B5(i5, 73, Ky; tle), u)* F 1(‘1 uozj1)
'
k,u
S CH% 1y ) T3 (a'z‘,y'luw )P ]
.’ ,]17!1

= A(kli1 - 7k2i2 + 7k3i3) ; Zj)" [<k1“ g1y Ko g7y + oy |73k3l-137'3ns> ME wi(u, 87) w (07, v 'uy)* ®,(iy, i, Ky; tlu), u)
1y 79y
X @o(iy,fo, Koy tlue), u) ®y(d5, 54, Kg; t), u)* T 1‘“(oz ua,1) l",,I2 2(0:'1 '1uya,-2)*
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XTI 3 (O‘-l?’-l“?“;') Kyt s Kotdofonty | ToKapt g7y + 5% 25 w, (e, 69) w, By, v ey)?
u

X %:1 @ (0,7, Ky the),u) Dgliy, jy, Kop t) 1) B3(i5, 75, Ky tloe), 20)* r ke (a Lua 1)
i'n

XI‘fnzzuZ(a-iy-iuya )* T 3?“2(01 yluya; )leﬂ1 Jﬁ] =0. (30)
Each case in category V will contain twelve such sets of equations.
Category V1. Case 18
(ot d 5 Kot gy | Toop sigms) ( £/ds) Byt Onyrt,
:A(kli1 +hy;, — Ky )j1n§2n2 (kg 215 Kok oiotty | 7oKt g 25 uE ('uI;I'2 D (64T qs Koy tlue), u)l" (oz ua,—a))
X &(i3, 75, ks; t), u)* I‘k3tﬁ’ (aitua )*
1 TR
=A(ky Ky, — Ky ) "x"x?:’;:z"z Ryl y7y + s Kopo¥y + gty | ToKapgrs + jng)*
X2 (1, @l s 1000 TR bt ) ) iy iy Ko 0, 10% T e % (31)
(ko 7y +dymg; Bopt gy | Tokopt sigmy) (£/dy) 0y 1, Onmt
=A(= vk Ty —ky ) 11"1'212 Ckype gy 705 Kapiofigny |Tokgp gigns) ZIP Wi, 6¥)* w (8, 7™ /uy) y(dy, s, Ky; tae), u)
X ®,(iy, 79s Koy t), u) @, (i3, 74, Kg; tw),u)* T, 1u1 (o 1 yluya )* I‘:?;Z(a;;uajz) T:{f;'g(azf;”"‘fg)*
= A=k F o, ~ Ky ; 1’2‘;2 " (ko pag; Yeght g7y +ng | ol g7y + 4 )* ? wy (Buy, BY)*
Xw (07,7 uy) Byliy, iy, By te) ,u) @40y, 7o, Ko; t), ) @4(i5, j3, Ks; t@) ,u)*
X o (0ry uya; )* I‘:?;;(aE;uvza ) Fm33n§(oz wy'a; ). (32)
(kypa g ymy; ops o7y + gy | Tokgpgiymy) ( f/dy) 0jy 5% Ongnt
= Ak - vy kg ) 1211’]2 " &yt g 45 Kot o7 + gty | TKatt gy ? W) (e, O¥)* wy 8y, ¥ 'uy) @10y, i1, y; tae) , u)
X &, (is, 75, Kp; ), ) @, (ig, 75, Ky; tle), u)* F:lilf,i(a; i) I",,,Z,,z(oz‘1 y hya, )T ,,,3,,. Ha; uaf)
=AKy;, - vk, — kg ) j("I'Ejz”z (ko g+ Kapt oy | Tokap g7y + igng)*
X 20 wy(Buy, 87)* wa (87, 7 uy) B4i, s, K t4), ) D3, o Ko te) 1)
X &,(is, 75, Ks; tloe), u)* 1",,,11,,1(01'1147/ @, )I",,‘Z2 ;(a"'y‘luyajz)* 1",,?3 3( ',-';u'yzaj3)*. (33)
(ko vy + dpmy; iy + dymy | Tk gigms) (f/dy) 0ig 14 Ongrt
=a(- ykl‘d - ka"z - kaig) jt"f?z"z (kg +g; Kot o + oty ‘73k3H373"3> ? Wy, 6Y)* wy (6, vy~uy)
X(a=ril,2 By(igsTa» K tlee), ) F;Zi“(a'iy'luya ) > &, (25,74, Ky; tla) , u)* 1" Ey (oz'iua]v)*
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; Z; (ks gf 45 Kot ofgrta | 73kqptg7s +3 bas* :E ws(Buy, 87)* wy(8y, v 'uy)
1n1, n

=A(=vKy, ~ vy, - k3¢3) s

k
X <a_I;l 9 ‘I>3(i,,,ja, k,; t(u), u) rma: -17-174701 )*) cI’4(23 »J3s Ks; tee), u)* 1" 3(“ u?’zajs)* .

CHTI AT TR Pr | 73kgpi g7 + dgmg) (f/ds) 5:'3:"3 6n3rt3
=A0kg, +hy, + YKs;,) Z; . (kyps 113 Kot oty | ToKsig?s + ) @ wylu, 8) wy(By, v luy)*
110792

(U D,(iasJar Ka; ), u)F (a uaf,,)<I>z(i3,jé,ks;t(u),u)*r‘ ECHR LT

= A(kul +ky, +'}’k3i3) 2 (g g Kapgrs + | 7ok g d)* uEw3(9u7, 67)

I17e 7oty

Xw3(6'y, V-Iu'y) < n ‘1>4(za7]a> ka, t(u) u) rm na(a u’yzaja)) (I>3(7'3:]3a kB, t(u) u)* r 3“3((!;17-1”7&]3)

a=1,2

(Ryp 7y + i g5 Kopd glgmy | ToRap gy +igms) (f/dy) Ojqyst, Onyrt

(34)

(35)

=A(=vKy; + Ky, 7Ky ) 25 Ry g7y + i Kolafng | TRspars +igns) {? Wy, 07) wa(By, ¥ uy)* By(iy, 1, Ky th) ,u)

3 jlnl' j2"2

k.
X &, (4y, J2, Ko; tle), u) By (2,54, Ks; tlu), u)*T, 11(01'17'1“')’0‘;1)*1"2 lait ) masrr;;(a;;‘y-iuyalé)
=0k + Ky, k) , Z} (&gt g a3 gt g7y + iy | Tola g )* Zu> wq (Buy, 67)
Tinge72m

X wo (8, v u)* @50, jy, Ky; tlee), u) 406y, o, Ky; ), u) 305, 75, ky; tlue), u)*

X Tl ity ey, )* Fm RCHTZS )l"mssu,?;(aigv'luwajs)o

(k1u1z'17771; Kyl g%y +Eymy ’73k3u373 +i3m3> (f/d3) 513i§ 6,,3,,?3

= A(kn = YKy, + vk; ) E (kyid g e Kobd o + oty | ToKopi 775 + Fgtng) ZR w1, 6Y) w1 (07, v tuy)* &,Gy, j;, Ky ; tw),u)

8 dingsdgny

X B (dy, fzs Ko; tae) ) @ (ds, 73, Ky tee), u)* Ty 1 n(@iua,) TabXoily uya, ¥ T3, ey uya,)
=Aaky; - vk, + Yk3i3) i Z] Ryl g7y + 7005 Kol giomty | ToRspugigg)* 22 £ wy(buy, 67)
11172

X w (8, v uy)* &,(i1, 71, K t),u) 84(6,, 75, Ky; ), u) @545, 15, Ky; tlae), u)*F 1(oz Uy a,l)

erz 2(a-1,y-1u.ya )*FS 3(a-1 '1u'ya,-3).

Coyp gy + iy Kppa g7y + dpmy | Tikgpa7y + dgmy) (F/d) 67,44 On
= Al vk, - 7Ky, +vky;) ; nEj . (kyps 7y + G Kabtg7a + iy | Tslapigrs + g ? (a_I} o 22ia Jar Ko ), u0)
1Mot =1

I‘m",.“(a" “luya )*) @, (43,74, Ky tl), u)* T' 3,,9(01'17"1147&,'3)

=A(~ Yk“l - '}’kziz +'}’k3i3)

4’1"1'22 Ryt s Kot ofianty | ToKalt gifnd)* );/(al;[z ®3(ia) Jas Ko tue), u)

k 1 - i, -
XTpze(aily uya, )*) B4(i3, 73, Ka; tat), u)*l"“a e ytuyay).

3 §ingdon -
j1nysiong =1,

A(ku +k2 -k, ) 2 l:<k1“J1”13kzﬂzjzn2‘ 7Ky Uars + fang) ? < 1'112@1(1'0,]'“, it ”)rkau“(ai oy )>

471 J. Math. Phys., Vol. 17, No. 4, April 1976 P. Rudra and M.K, Sikdar

(36)

37

(38)

471



k
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k - . . -
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1 u
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u
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- X - - . ,
Xr‘fr?z‘;; (ai:u aig)rmss‘;i(ai;uajg)* + ey 1y oy K oy + Gy ' 5Ky 1y J5n)* ? w, (6, 67)*

le(ey, )/'lu’)’)¢3(i1, jl,kl;t(u),u)¢4(i2, F2 K23 t(u),u)<I>4(i3, jask'a;t(u),u)* X

kL -1a~1 * Tk, 14 -1 ) S8 -1 *
xToia(a v ura; ) I“mzz,,g(a,zuyzajz)rmasng(a,sufajs)]

= Af- Yklil - 7k212 -k;; ) 2 [<k1 vy iR by, + jany ! L NTRE NN 2 wslae, BYY* wa( 6y, v 'uy)

3 jinysignz

A O e ) 4, 2 Rt 0 T8,
a=1,2 a'a a a man} 3 3

@S(ia ’jayka;t(u) , u)

+ (K g Gy Ry o fomy l T Kq g finp)* Ews(au% 6Y)* w4( 6, 7’-1“7)< _H
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a=1,2

X F"u“a(a;:)"luyaja)*> &, (i, ja, Kystlu) ,20)* P;33‘f,§(a;;u}’zdj3)*]

ma"ﬂ
= A(klil - 7k212+ Yksis) ) E [<k1 bydangiKe a7y +j2n2| 75K, “3%”3)2 wy (e, OY)w, (67, Y ur)* @, Gy, jy , 3t w) , )
Jl"l,]zﬂz u

. . PR . x - k. - -
Xq’z(lz sJ2s k,;t(u), u)® 2(13 s T4, Kait(u), uf* lel‘:,i(ai;uajl)sz;rz(ai;rluyajz)* F:33‘:’§(ai;'}"1u‘)’ajé)
+ (kg + Gy Ko by oy ‘ T5Ks tyry + jing)* 2 w (B, 0w, (87, v uyy* &4lis, j1, Kystla) 0

u
X ligyfa, Koitt), 1)@ (4, s, Kyst(ae) , u)* F'f,}l‘j,i(a;iu}'zajl)r'fnzz‘f,i(a;;)’"uvajz)*

kbg( gpelorl
X Fm3n3(ai3y- uyajg)]

= A(kul + kziz + yksia) 2 [<k1/~‘1].1n12k2“2].2"2' Tk Hy Jan1a)

FiMhsdong

i
a

x%/ wyu, BY)w, {67, v uy)* ( =1;I’2 @, (0, ,ja,ka;t(u),u)l“’,‘rga‘;z(a‘lu a,a)>

a

X®,{ig, 4, Keitla), u)* F;33:§(a;;y'1147aié) + (K, g7y + Gy Ko oy + oy | TR Mgy + find)*

X253 wy( By, 09wy 0y, Y uy)* < n
u a=1

=1,2

(7,5, K5t u)l";a:a(a;;u}’aaja )>
aa

X P (i, s, Kaitla), u)* I‘;sa‘;g(a;; Yu 701].3)]

= A(- qul + k2i2+ 7k3,~3) x 2 I:< kwyry +j1"1;k2“2j2"2| T3k3u3j3n3)§)w2(u, 07w, (87, v luv)*
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11"1’]2"2

X q’z(iujxykl;t(u):1‘>¢1(i2, Jor Koitlu) ,20) ®,(é5, 75, Kastlu), u)*
I, 1#11(0521)/-12”&1'1)* anzz‘fé(aiiu “fz)rfnsa':-g (d;:rluyaig) + QI 1y 17Ky Ty + Tt | TaKs Ha¥s + jing)*
X2 wo(6uy, 0w, (87, Y ur/*@,(iy, iy, ky:t),w)@ 4z, ja, Koit(u) 1)@ 405, 75, Kst(n), u)*
u
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J. Math. Phys., Vol, 17, No, 4, April 1976 P. Rudra and M.K. Sikdar

472



= A= vy, ~ky i, ) 2
1 2 3 11”1”{2"2

x I‘:{x‘:‘a(a;l‘}"lu'yaj )*> @505, j5, Kastla) rksuf}(a;;rlu'ya,é) + &y by Giny Kol Gons ‘ ToKs vy + ing)*
aa a a M3"3

gs1,2

x?( I

Each case in category VI will contain 24 such sets
of equations,

To obtain the CG coefficients we solve the cor-
responding sets of equations together with the orthog-
onality relations of the CG coefficients [cf. Eq. (28) of
Ref. 31]:

T gtk kagls | TR wigilD*
ay lrdzlz
ajijrazty

H

X (R, 11q4003Ka g0, \ ToKs lhagsls)
% (Ky 149104 |k1u1q1l1)<k2#2q§l§ {kzi“z%lz)
= GTgTsékékzéuéu3<T3k3 Haqals l 7oKy 3qala).

If CG coefficients are wanted for some other equiva-
lent co-representation D¥ (@)’ connected with the
matrices D*(a), used here, by the relation:

Dka“ﬂ(a)' — V;leauo(a)Va[ul’
VIV,=E,

(40)

(41)

then the new CG coefficients (ki q,l;; Kyitoqqly | T3Rs 143050
are connected with the old CG coefficients
(ki1 1q404; Kot ool | T5Kal3q405) by the relation:

(LN THR IS NTRAA } 75K Hsgala)
= 2

" e
aj¥11a5150a30;

(LTI AR NTI7 00 ! 7oKy Laq3ls)’

(Ve 0513 Vadagiyy agty (V5 (42)

dplova 4'1'311313'
272 3
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Recently several unphysical solutions of the three magnon bound state equation for the isotropic
Heisenberg Hamiltonian have been found, and one unphysical solution for the Hamiltonian with
longitudinal anisotropy has been computed. Here we complete the work for such unphysical solutions for
all anisotropy from the Ising to the isotropic Heisenberg limit by directly solving the integral equation.
Two types of wavefunctions are constructed. The eigenvalue of the first type satisfies a cubic equation in
general, but gives only a real root in the Ising limit and a pair of complex conjugate roots in the isotropic
limit. The other type has a single eigenvalue; this one, previously known numerically, is shown to have a

simple analytic form.

I. INTRODUCTION

The equation for three magnon bound states, Eq. (4)
below, for a Heisenberg linear chain with only longitu-
dinal anisotropy was found,'~* and its physical solution
was numerically computed some time ago. In a recent
interesting work, Van Himbergen and Tjon® have dis-
cussed several unphysical solutions, besides the physi-
cal solution, for the isotropic case, and one unphysical
solution for the general anisotropic case. The existence
of an unphysical solution for the isotropic case is also
apparent in a recent computation of the eigenvalues by
Millet and Kaplan, ®* Their presence can be seen ex-
plicitly in the simplest way by going to the Ising limit
when the kernel of Eq. (4) becomes separable.? The ex-
istence of these unphysical solutions has to be attributed
to the fact that the three magnon bound state equation is
derived by utilizing Dyson’s ideal spin wave transforma-
tion® or by making equivalent introduction of extra states
into the physical Hilbert space.®=®

The method of Van Himbergen and Tjon is to construct
three magnon states by using a Bethe-type ansatz’ on
the Dyson Hamiltonian and then to verify that some of
them satisfy the bound state equation. Their method is
indirect. Also their work is incomplete as far as the
solutions for the general anisotropy is concerned. The
one eigenvalue they report has in fact a simple analytic
form which they have not noticed. Besides, there are
other solutions corresponding to the complex solutions
found for the isotropic case. The purpose of this work
is to solve the three magnon bound state equation direct-
ly for any anisotropy and complete the work of Van
Himbergen and Tjon for these unphysical states.

Our method is as follows. By studying the equation,
it is possible to guess the term in the denominator of
the wavefunction. As an ansatz we take the numerator to
be a finite Fourier series. Then we note that the coeffi-
cients of the wavefunction and the eigenvalue can be
computed by arranging for the cancellation of the branch
cut of the off-shell extension of the two-particle ¢
matrix. The fact that this cancellation might take place
was already noted earlier for the solution of the Faddeev
equations for three particles in one dimension interact-
ing pairwise via the delta function potential. ®+®

Il. THE BOUND STATE EQUATION
We consider the Hamiltonian
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H=—3J 23 [S:5%,, + 0(SiS%,, + S3S%,)], 1
1,8

where J >0, 7 goes from 1 to N, and 0 joins the nearest
neighbors (N+1=1), We restrict to the case 0<s o<1,
The Dyson transformation® leads to the ideal Hamiltonian

H= %Jj% T’j* (T’] - Unj+5)
+ %JJA? Mg 0m2 + 01,5 = 20,7,.). (2)

7y and 7, are creation and destruction operators, re-
spectively, of an ideal spin deviation quantum at site j.
The ground state has all the spins aligned. The spin
waves result when a single reversed spin moves along
the chain. If two spins are reversed, their interaction is
represented by the ¢ matrix®

(] t)2p0)

_ 4J cosp(ocost - cosp)o® cos®a[(1 - 2)* — 0% cos®alt/?
TN -2 -2 -0%cos®AP 2 - (1 -z - 0%cos®r)]

(3)
z=¢/2J, ¢ is the energy of the two spin deviations, 2x
their total momentum, and g, p their relative momenta
in the final and initial state, respectively. The ¢ matrix
in (3) is separable. With this observation, the Faddeev
equations for three spin deviations can be simplified.
One finds that the bound states of the three spin wave
deviations are determined by the equation

02 COSZ%IH
‘I’(Pl):g[3 ~E-ocos(K-p,)]

><<1_ 3(3 -~ E)—30cos(K ~ p,)- 0% cos®ip, )_1
BB tocosli - p)T - 0% cos"p, T
1 L4

X; J ap;

-¥

< [ocosip, — cos(K = 5p, —py)lcos(K~p, —3p,)
TE-I+30[cos(K - p,} + cos(K - p,) + cos(K — py — p,)]

X¥( py). (4)

E is the eigenvalue of the three particle bound state in
units of J. K is the total momentum of the three-spin
deviations.

Notice that the two-spin deviation ¢ matrix has a pole
at the two-spin deviation bound state

Copyright © 1976 American Institute of Physics 474



z=3(1 - 02cos?®)), (5)
and also a pole at
z=1. (6)

This is the unphysical two magnon bound state. Van
Himbergen and Tjon show that this corresponds to having
two ideal spin deviations on the same site, something not
possible for the Heisenberg chain with S, =%. For the
three magnon problem, they find (a) the three magnon
continuum, (b) a continuum of physical scattering states
where one magnon scatters against the physical two
magnon bound state of Eq. (5), (c) a continuum of un-
physical scattering states where a magnon scatters
against the unphysical z=1 bound state of Eq. (6), (d)
the physical bound state E,=3%(1 — cosk), (e) a real un-
physical eigenvalue E,=17/8, and (f) a pair of complex
conjugate eigenvalues E,=2.063+¢ 0.4961. For the case
of anisotropy they numerically compute an unphysical
eigenvalue, besides the physical one. Our main concern
in this paper is with (e) and (f) for all values of o between
0and 1,

Il. THE ISING LIMIT
In the Ising limit® ¢ —0, and with E#3 we get from (4)

1
¥ip)= 2-En
XI [cosi{(py ~ ps) + cos(2K - 3p, — 5p,) ¥ (p,) dp,.
- (7
The kernel is separable, and we get three eigenfunctions
corresponding to the eigenvalue

EI:]" (8)
¥, (p)=coszp, ¥,(p)=sinzp,
¥,(p)=cos(K -%p). (9)

The value E=3 corresponds to the three free spins in
the Ising limit when the overturned spins are not neigh-
bors of one another. When these are indeed side by side,
only two bonds exist joining up to down spins, giving E
=1. That there are three eigenfunctions, two more than
the expected physical solution, shows the presence of
unphysical states. Notice the presence of half-integral
multiples of the momentum in the eigenfunction.

IV. GENERAL ANISOTROPIC CASE

A finite Fourier series in the numerator of ¥ could
provide solutions of (4), provided we could guess the
singularities, if any, in the denominator. Examining
(4), we find two functions of p, in the denominator, one
containing the square root. Now in the problem of the
delta function potential,® this branch cut singularity is
cancelled from the result of integration over the wave-
function. Bearing the close analogy in mind, we leave
out the factor with the square root, so that the denomina-
tor is taken to be 3[3 — E - 0cos(K - p,)], and the solu-
tion put as

Y(p)=F(p)/+[3 - E - ocos(K - p)]. (10)
F(p) is hopefully a finite Fourier series. Define
exp(ip,) =z, F(p,)=7(z). (11)
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Then the equation for F (equivalently 7) is

B - ocos:

=1
F(pl):4cos%pleXP(iP1)( - (ﬁ2—1)1/2>

1
X -1/2
377 fdz F4

w(14+__ 22(B— ocossp)) expli(K - 3p;)] >
22 - 2zBexpli(K - p,/2) ]+ exp|2i(K - p,/2)]

[z +exp[2i(K — p))]]

[22 - 2za exp(iK) + exp(2iK)] (), (12)
where we use
a=3-E, a=a/0, B=[a~-cos(K~p,))/2coszp,. (13)

The contour of the integral in (12) goes around the unit
circle. Notice that the poles are

2,,,=[BF (8 - 1)'/2]expli(K - p,/2)],

zy ,=[aF(a? - 1)"/%]exp(iK). (14)

Since z,2,=exp[2i(K - p,/2)] and z,2,=exp(2(K), that is,
the moduli of the products are unity, one of the poles z,
and z, and another of z; and z, must lie inside the unit
circle. We assume 2z, and z, are those inside. Another
fact of crucial importance is that

2, = 2,=2(F - 1)/ 2 expli(K - p,/2)].

Hence the term that cancels the branch cut (8 -1)'/2
must come from the pole z,, there being no other pos-
sibility of generating (5° - 1)'/2.

(15)

A. The first type of solution

To get a form of F(p,), we note that we have to get
rid of the branch point at z=0. The factor z'/? and the
solutions (9) suggest the ansatz

F(p,)=cossp, (c_,exp(-ip,)+c,+c,explip)).  (16)
So
F)=[(z+1)/22"3(c_127 + ¢y + ¢, 2). (17

Hence the branch point at z=0 is reduced to a pole. We
have to determine now c_,, ¢,, ¢;, and the eigenvalue E
so that on substituting (17) into the integral (12), we
generate F(p,) on the left-hand side.

Carrying out the integral in (12), we get
c.1exp(~ip,) + ¢, + ¢, explip,)

o1 _B=0cosip, )‘1 [B— oCcostp,
- (B -1)1/% (B -1)17?

X[Blc., exp(—iK +ip,/2) + ¢, exp(iK — ip,/2)) + ¢,

+(F - 1)% (c_,exp(- iK +ip,/2) - ¢, expiK - ip,/2)]
+2¢ (8- ogcoszp,) exp[-i(K + p,/2)]

_2cos3p,(B-0cosip,)
(af - 1)7Z

[alc_; exp(~ iK) + ¢, exp(iK))

+eot (@ - 1) 3(c_ exp(~iK) - c, exp(iK))]
+c. exp(-ip)+c_ exp(-2iK+ ip,) + c,exp(—ip,)

+2ac_, exp(—iK - ip,)
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1
—W[COS(K’ ~py)+ acosp; —i(a?—1)/2sinp,]

x[alc., exp(- iK) + ¢, exp(iK)
+eot+ (@ =1)3(c | exp(-iK) —c, exp(ik)) ]] (18)

The first term on the right within the large square
brackets comes from the pole z=z, and part of it has
the correct factor to cancel the branch cut (8% - 1)/2
We rewrite this term as

8- ocos: )
(1 “TEoD

x[Blc_exp(—iK+ip,/2) +c, expliK - ip,/2)) + c,]

+ Ble_yexp(—iK +ip,/2) + ¢, exp(iK ~ ip,/2)) + ¢,

+ (B-ocostp,)lc, exp(—iK +ip,/2) ~ ¢, exp(iK — ip,/2].

(19)

The first term of (19) gives a part free of the branch cut
(#-1)2 and can be equated to the left side for solving

C.1y Cy, €. The remaining terms all have to vanish by
proper choice of E. Hence

c_yexp(—ip,) +co+ ¢, explip,)

== 2(c., exp(~ iK)Bexplip,/2)

+ ¢, exp(iK)Bexp(—ip,/2) +¢c,). (20)
The solution is
c,=xexp(iK), c,=xexp(-iK), c,=-%ax, (21)

with x arbitrary. With (21), all the remaining terms of
(18) and (19) vanish if we choose

ta-0=3%ala-o)a®-1)1E (22)
which gives a cubic equation for the eigenvalues E:
E® ~E¥(7T-30)+E(15- 303 -9(1+30%-§0%=0. (23)

The eigenvalues of (1) are independent of the sign of 0.'°
Equation (23) shows that the same holds for these un-
physical states. In the ¢=0 limit, we have E=1, E=3

being the “continuum.” For o=1, (23) factorizes
(E-2)(E*-8E+ 3)=0. (24)

As discussed below, E=2 corresponds to the edge of th('a

1 B-ocossp, \** B— 0 coszp,
T(E-DR (B2 -1)r/2

TABLE 1. Eigenvalues of Eq. (23) for different

anisotropies.

¢ E, E, and E,

0 1.000 00 e

0.1 1.00627 2.99249117 0,00040
0.2 1.02531 2.96985+7 0.001 54
0.3 1.057 86 2.93170+7 0.00519
0.4 1.10532 2.87734+7 0,01246
0.5 1.17011 2,80557+7 0,024 92
0.6 1.25647 2.71426+7 0,044 48
0.7 1.37250 2,59938+% 0,07395
0.8 1.53721 2.45140x% 0,11853
0.9 1.82309 2.23408+% 0,201 31
1.0 oo 2.06250+7 0,.49608

unphysical continuum, where the integral around the
unit circle is singular. Hence we get two roots

E———f—gti%ﬁ, (25)

obtained by Van Himbergen and Tjon. For 0< o<1 we
have three roots, tabulated in Table I. The unphysical
real root starts at E=1 for 0=0 and hits the unphysi-
cal continuum at ¢=1. The pair of complex conjugate
eigenvalues, on the contrary, is well defined at o=1
and hits the continuum at 0=0.

B. The second type of solution

The reduction of the branch point at z=0 to a pole at
z=0 can be achieved by having a cos3p, =3(z+1)z7'/?
factor but also by a singp, = (1/2¢)(z - 1)z"Y/2 factor. As
an ansatz we start with

F(p)=cosz p, (c_, exp(—ip,) +c,+ c,explip,))

+ sinkp, (b_,exp(—ip,) + by + b, explip,)). (26)
So
+1
F2)= gzé”—z(c_lz'l +eotcy2)
z-1 1
T 917 0T bt by2). (27)

We have to fix six constants ¢, ¢_;, ¢,, by, b, b, and
the eigenvalue E. Substitute (27) into (12) and try to
arrange for the cancellation of the branch cut (8 -1
Examining the pole at z=2z,, we get a contribution

)1/2

(ZBcosép1 lc., exp(—iK +ip,/2) + ¢, expliK —ip,/2) ] +2c,coszp, + (B —1)'/?2 coszp,

x[c_, exp(—iK +ip,/2) — ¢, expliK - ip,/2)] + 2icoszp, [isin(K - p,) + iBsinzp, - (7~ 1)*/* coszp]

X{B[b-l exp(—iK +ip,/2) + b, exp(iK — ip,/ 2 by + (8 — 1)/ %(b_, exp(= iK + ip,/2) — b, exp(iK - ip,/2)] })' (28)
[Beosip, — a +i(B2- 1)/ 2sinkp,]
We could extract from (28) a part free of the branch cut [ (B —1)22 coslp, [c_ e . .
. - exp(—iK+ip,/2)
provided the denominator (Bcoskp, — a+ (& - 1)!/2 singp,) epilea ‘ 1 1
can be cancelled. This is achieved by a suitable —c,exp(GK -ip,/2)] + 4iycoszp,
choice of b,’s. Let x[i sin(K - p,) + iBsinsp, — (- 1)}/ 2coszp,]}.  (30)
b_, exp(—iK)=b, exp(iK) =y, b,=-2ay, (29) By rearrangement we write
y arbitrary. Then (28) becomes —25costpyfc_y expl—iK + ipy/2) + ¢, expliK — ip/2)]
- B B~ B N .
(1 - B(ﬁzo_ci)sf;%l) B(Bz(icf; ?é’i {2B8cossp, - 2¢,cos5p, + 4y coszp, sin(K ~ p,) + 4y sinzp,
- ‘ : e O 61
% (c_, exp(— iK +ip,/2) + ¢, expiK — ip,/2) + 2¢,c0835p, X Bcoszp, + \1 - FoD) .
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The terms [-++] can be lumped with other terms of the
integral with the same prefactor. We now equate the

left hand side with the terms free of (& -1)!/2, The left-
hand side is

costp, [c_, exp(=ipy) + o+ c, explip,) ]
+ sinip, [b_, exp(—ip,) + by + b, explip,)]
=coszp,(c_, expl~ip,) + co+ ¢, explip,)
+ 2y singp, [cos(K - p,) - a]
Equating this to
[cos(K ~ p,) — allc., exp(—iK + ip,/2) + ¢, exp(iK ~ ip,/2)]
~2c,C083p, + 4y coszp, sin(K ~ p,)
-2y singzp, [cos(K -p,) - a],
we get the solution
x/y=—2.(32)

With the constants ¢, c_;, ¢,, b,, b_; b, fixed, the re-
maining terms can be made to vanish if we choose

cy=0, c_exp(-iK)=-c, exp(iK) =ix,

a—(a?-1)"2=4%0, (33)
Hence the eigenvalue is
E=1 —%0’2, (34)

Van Himbergen and Tjon have numerically solved (4) at
K= and found this eigenvalue. Since E is independent
of K, their calculation would have been sufficient to find
E, but they have not realized that their numerical values
have the simple analytical form (34).

C. Scattering states

By studying the integral in (12), it is possible to in-
dicate where the unphysical scattering states correspond-
ing to the scattering of one magnon on the unphysical two
particle bound state of Eq. (6) exist, The two poles [a
+(@® - 1)*/?]exp(;K) are image points with respect to the
unit circle. So long as one lies inside and the other out-
side, the integration can be carried out without difficulty.
If, however, we vary energy so that &® becomes equal
to 1 or E=2, the contour becomes “pinched” between
two poles and the integral is singular. As long as a®-1
remains less than zero, there are two poles moving
uniformly along the unit circle in opposite sense. Final-
ly when E has increased sufficiently to make a®=1 again
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(E=4), the poles collide at the antipodal point and
separate—one moves into and the other out of the unit
circle. Thus for all the values of E between 2 and 4,
the integral is singular. These are the unphysical scat-
tering states.

V. DISCUSSION

We have found two sets of unphysical bound states:

¥, (p)=coszpa -3cos(K - p)]/[a~cos(K -p)], (35)
where «a is given by (22), and
¥,(p)=1{2 cosip sin(K - p) + sinzp [cos(K - p) — o]}/

[@ - cos(K - p)], (36)

with a given by (33). In the isotropic case, Van
Himbergen and Tjon have constructed the wavefunction
of the physical bound state, but because of the vast
amount of algebra they are forced to verify the solution
numerically. Although the physical eigenvalue has a
simple form, no analytic derivation has so far been
given. We hope to be able to extend our method to that
case.
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Solutions of the three magnon bound state equation. i
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A unified derivation of all the unphysical bound state solutions of the three magnon bound state equation
found so far is given by making a simple algebraic transformation of the variables in the equation.

In an accompanying paper,! some solutions of the three magnon bound state equation

0% cos’sp,

‘I’(Pl):

[ocoskp, = cos(K = 1p, = p)]cos(K = p, ~+p))

(1 __3(8~E)-30c0s(K —p) - 0 cos’sp, _ )d
B-E-ovcos(k—p)] \ [EG-E)=~iccos(& —p,)F - Fcossip,]'

x—f dp
T 1E -3 +10{cos(K - p,) + cos(K - p,) + cos(K - p, - p,

are derived. The starting point is an ansatz for ¥ with a
finite Fourier series divided by a factor obtained from

a prefactor of the integral in (1). The finiteness of the
Fourier series is assumed on the basis of the solution

in the Ising limit. In this brief paper, we want to present
a different method where this particular point is justi-
fied better. Also the present method gives a unified de-
rivation of the both the types of solution found in the
previous paper.

I. TRANSFORMATION OF EQ. (1)
We introduce the variables
x=tanzp,, v=tanzp,. (2)

Equation (1) is transformed into

¥(x)=4 [TT('I +cosK)(1 + x%)t/2

2 sink o —coskK __j:__)] -1
X(x —zxa+cosK+a+cosK)(1 d
oy 1 (y2+1)f _)
R VA (?+ Dy -2}y -2)
X(vg+h)¥(y), (3)
where we use the abbreviation

a=(3-E)/ o, (4)
o2 sink a—-20—-cosK

J=x = 20 TSR a+cosK ' )
z 4 s sinkK , @° —3cos’K

= —dx o rcosK  °% (a+ cosK)

sinK (¢ - coskK) (¢ —cosK)P -4

—4x (o + cosK)? (a + cosK)? ’ 6)
2(sink — x cosK) id
2= AT 2 arcosk) 1+2° D
g=x?sinkK + 2x cosK - sink, (8
h=x%cosK - 2x sinK - coskK. (9)
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T ¥(p,) 1)

[E is the complex conjugate of z, and the pole y =z lies
in the upper half-plane if 4> 0, which we take to be the
case. An important relation that simplifies the algebra
should be noted:

(ZZ+1)Z+1)=16/[(1 + )@ + cosK)?]. (10}

Il. SOLUTION

Notice the branch points y==+ibesides the poles y
=2z, z. The branch points can be reduced to poles if the
solution has a factor (1+ x?)-1/2, and the other prefactor
in x in Eq. (3) supplies the denominator of the solution.

We write

_ 2y1szf 2 sinK a+cosK\!
¥lx)={1+x7) (x 2xa+ cosK + a+ cosK Flx.
(11)
Then F satisfies an equation
Flx) = 4 “a
= mla+cosK)1-f/d) ) 4
(yg+n) (1_ (V¥ +1)f )
(»¥*+1)? (" + 1)y -2)(y-2)
5 sinK a-cosK\ ™
XF(y)(y _2ya+cosK a+cosK) : (12)

Since, by hypothesis, (11) exhibits explicitly all the de-
nominators of ¥, it follows, by counting powers, that
F(y) can have only a finite number of powers of y, that
is, it must be a polynomial in y in order that the integral
in (12) exists. We start with the ansatz

F{x)=cy+tcx+ext + 0557, (13)

We have to fix the constants ¢, ¢;, ¢;, c; and the
eigenvalue E.

Substitute (13) into (12) and carry out the integral by
closing the contour in the upper half-plane. We first
note that the pole y= z will produce a factor f/d, as z
~-z=2id/(1+ x?). There is no other contribution that
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will cancel the square root in d. With the help of (10),
we simplify the terms after integration and rearrange
them to cancel the factor (1 - f/d). This leaves a poly-
nomial in x which has to be equated to the left-hand side
F(x). Equating the coefficients of various powers of x,
we get

¢, 8inK - ¢, cosK - ¢, sinK
+ cy{a cosK + cos?K + 2)/(a + cosK) =0, (14)
1 (a+3cosK)®

clé(a+3cosK)+czsinK—c-3€ (& + cosK) =0, (15)
2 _ — 2
COSinK+01%(a_3COSK)_Can(3_('a_3€OES—SIg—I{l=0- (16)

The coefficient of x reduces to an identity and does not
give any equation. One notices that (16) results from the
addition of (14) and (15), so that we really have two
equations for four quantities ¢, ¢,, c¢,, ¢;. We have two
choices.

(i) Solution c,#0, c,=0: From (14) and (15), we get

Co __ % _ C2
~3a+cosK  2sink  —-%ea-cosK®

(17)

Since Eq. (1) is a linear equation for ¥, one constant
multiple remains arbitrary. With (17) we can make all
the remaining terms of the integral on the right side of
(12) vanish, provided we choose
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La—o=ta(a-0)/(a®-1)/2 (18)

This gives the eigenvalue equation (23) of the previous
paper. These solutions have the wavefunction (x=tanzp)

Wix) = 1 (2 0 SINK a-3coskK
=T+ 2 \* ~“* 3+ 3cosK ' a+3cosk

sinkK
a+ cosK

(19)

o —cosK \ !
X | %% —
(x 2% a+ cosK )

(ii) Solution c,=0, cy+#0: From (14) and (16) we get

cy cy Cs

~2sink  a+ 3coskK  a+ cosK °

(20)

The remaining terms are made to vanish by choosing

a-(a®-1)2=10 or E=1-%c. (21)
The corresponding wavefunction has the form (x=tangp)
¥lx) = 1 <3+ a+3cosK  2sinkK

=0+ \¥ " g+ coskK  a+cosk
sink a-coskK \1
X -
(xz 2x a+cosK qg+cosK ) (22)

The other possibilities ¢,=0 or ¢, =0 do not lead to any
solutions.

1C.K. Majumdar, J. Math. Phys. 17, xxx (1976). All the
references can be traced from that paper.
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Comment on the reduction of an important 9-j symbol*

C. Stassis and S. A. Williams
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(Received 20 October 1975)

An error in the formula for the reduction of an important 9-j symbol is pointed out, and the correct

refationship is given.

In problems of atomic and nuclear spectroscopy,
the 9-j symbol

S$Ss 1

41, L

j1 J» L
occurs very frequently. In practice this symbol is re-
duced to the 6-j symbol

{11 1 L}
Jy Jy S
whose values are tabulated.!

For example, in nuclear structure calculations the
strong spin—orbit interaction justifies the use of jj-
coupled wavefunctions, but the residual interaction may
be taken to be spin-independent. In that case the LS-
coupled wavefunctions become a useful tool and the
first-order energy shift for levels of angular momen-
tum J is given by

E=0 (2j,+1) (2j,+1) (25+1) (2L +1)
LS

N § 2
z 2 S

X
e~

A ((41) L| Vg, v) | U4y L), L

J1 Jo d

All the 9-7 symbols occurring here may be reduced by
suitable formulas to simpler 6-j symbols or a combi-
nation of these for L #J, For an interaction more gene-
ral than the 5 potential both $=0 and S=1 contribute
and for L=J, S=1, the 9-j symbol mentioned above
OCCurs,

The 9-j symbols appearing in Eq. (1) are also fre-
quently used in nonrelativistic, as well as in relativis-
tic atomic calculations®?® (hyperfine structure, transi-
tion probabilities). In fact, to take full advantage of the
symmetry properties of the atomic states, the atomic
operators are expressed in terms of the tensors W'* ¥,
which are simply related to the generators of the groups
Sp(4l +2), R(2Z+1), R(3) and G, (for f electrons) used
in the classification of the atomic states. The operators
WP X are nonrelativistic operators having rank « in
the space defined by 8, k in the space defined by L and
of rank K in the space of =L+ 8. The reduced matrix
elements of W'%®¥ are given by
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(SLJ| WRE|| s/ Lrgry=[(2J +1) (2K +1) (277 + 1) ]1/2
S S «

X (L L'k

J J K

(SL || w*® | s'L", (2)

where W*® is a double tensor whose reduced matrix
elements are tabulated, #5

The relationship connecting the particular 9-j of
interest to the 6-j, {j; 2 L}, is obviously then of con-
siderable importance and has frequent use. Unfortu-
nately, this relationship has been erroneously reported
in several standard references. %7 The correct rela-

tionship is
S S1
l1 l2 L :(__ 1)L+S+12+j1
Js 7y LS

G+ 1) =L+ D] =[G+ 1) - 4,0, + 1]
[4S(s+1)(25+1)L(L +1)(2L + 1)/

{zl I L}
Xy . . . 3
Ja 44 S ®)

This relationship is most easily derived via the 9-j
recursion relationship of Arima et al.® which leads to

S S 1°
g . 1, L — [li(l{*'l)‘lz(lz'*'l)]'[j1(j1+1)'jz(jz+1)]
2 1 b [4S(S+1L(L +1]7?
J1 J L
s‘ S S$ O
x 2l 1, L (4)
?71 ].2 L

Equation (3) follows from Eq. (4) by reducing the last
9-j to a 6-j using any of the standard references.

*Work performed for the U.S. Energy Research and Develop-
ment Administration under Contract No, W-7405-Eng-82,
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Application of coherent state representation to classical x®

and coupled anharmonic oscillators

R. Dutt* and M. Lakshmanan'

International Centre for Theoretical Physics, Trieste, Italy
(Received 1 July 1975)

The problem of obtaining perturbative solutions to the nonlinear differential equations which describe the
motion of the x ® and quartically coupled oscillators is treated by the use of the well-known coherent state
representation. The results exhibit the basic qualitative features of nonlinearities and the characteristics of a

coupled system in the weak coupling limit.

. INTRODUCTION

The study of nonlinear classical and quantum oscilla-
tor systems is of significant relevance in understanding
the basic nature of interaction in many physical prob-
lems. Considerable mathematical efforts are being em-
ployed lately to examine the qualitative aspects of the
nonlinear differential equations, describing the ap-
propriate equations of motion. ! One of the main difficul-
ties in handling these problems is the nonavailability of
closed analytic solutions to most of them. So, one is
liable to take recourse to approximate procedures such
as perturbation methods.? Within the framework of
various kinds of perturbative techniques which are being
used, one essentially linearizes the problem suitably
so as to get the dominant part of the solution and then
makes a power series expansion? in the coupling param-
eters, assuming it to be small. Subsequently, one ob-
tains a system of linear differential equations or a set
of recursion relations.® It has been observed recently®*s®
that the coherent state representation® can be profitably
used to obtain perturbative solutions of nonlinear oscil-
lator systems which are the classical limits of weakly
perturbed quantum harmonic oscillators. The main
advantage of this approach lies in the fact that one does
not need to solve the system of differential equations or
the recursion relations. On the other hand, one needs to
do straightforward algebraic manipulations with the
known results of the eigenenergies and the eigenstates
of the perturbed quantum oscillators.

The main objective of this paper is to find the pertur-
bative solutions of the classical nonlinear oscillators
with x® anharmonicity and for a system of two weakly
coupled oscillators with quartic self and mutual coupl-
ings. We find that our first-order results reveal the
general qualitative features of nonlinearities and agree
with the results obtained by other methods."+*

In Sec. II, we consider the problem of x® anharmonic
oscillator with weak coupling and obtain the perturbative
solution up to first-order in the coupling constant, using
the coherent state representation. The results coincide
with the expressions obtained by Bradbury et al.,” who
used the Fourier expansion technique. Since an exact
analytic solution of this particular problem has been
derived recently,® we observe that our results agree
with it up to first-order in the coupling parameter. In
Sec. III, we apply the same coherent state method to
two quartically coupled oscillators for which exact
solutions are not known. Our first-order results ex-
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hibit relevant characteristics of nonlinearities in a
coupled system.

I1l. CLASSICAL x% OSCILLATOR AND COHERENT
STATE

The classical equation of motion describing the
system with the Hamiltonian
H=p*2m+ smw’x®+ % Bmx®

(8>0) (2.1)

is

X+ wlx+ Bx°=0. (2.2)

Considering x as a quantum dynamical variable, the
Ehrenfest theorem® asserts that the expectation value
of this dynamical variable will satisfy the classical
equation

dZ 2 5

F(x)-l—w(x)%—,@(x):O. (2.3)
For our purpose, we shall evaluate the expectation

values with reference to the coherent states which have
the well-known representation®

| @) = exp(~ ‘a|2/2)nz=0 ‘/iyn_:

Here, |n) represents a harmonic oscillator state of “n
quanta” and is the eigenstate of the Hamiltonian

‘n). (2.4)

H=p*2m+ 3mws?, (2.5)
corresponding to the eigenenergy
E,=Fw(n+3). (2.6)

The coherent state | &), being an eigenstate of the an-
nihilation operator with the complex eigenvalue a, cor-
reponds to a lowest uncertainty state and hence, is most
suitable to reproduce classical results from the quantum
description in the appropriate classical limit. The time-
independent states | o) given in (2.4) are those charac-
teristic of the Heisenberg picture of quantum mechanics.
The corresponding Schrédinger state takes the same
form with o replaced by (- ¢A) exp(iwf), where we shall
take A to be real. Although these states are not orthog-
onal, they are normalized and form a complete set so
that any arbitrary quantum mechanical state vector, or
an operator, can be expanded uniquely in terms of these
vectors.

In terms of the creation and destruction operators a’
and a of the linear harmonic oscillator given by the

Copyright @ 1976 American Institute of Physics 482



Hamiltonian (2. 5), the variables x and p can be
expressed

x=i("/2mw)/ *(a - a*), (2.7a)
p={mwb/2)a+qa"). (2. o)

The operators a and q* satisfy the standard commutation
relations

{a,,a,.1=[al,d'.]1=0,

(2.8)
[ay,al.]= 84
From (2.4), (2.7a) and (2. 8), we obtain
(a|2®| @)= (%)
= (0 + 107/ 2mw)(x)* + 15(4/ 2mw)*(x) 5= (0)°.
(2.9)

It is then clear from Eqgs. (2.3) and (2.9) that (x) will
be our required classical solution in the limit 7 —0.

The linear harmonic oscillator amplitude, which is
the lowest order (B=0) solution in our case, may be
trivially obtained from (2.4) and (2. 7a) by assuming
the limit 222 M#/2mw)'/? —~ A/2; A being a constant. We

PET)

thus write
lim (afx|a)=Acoswt,
0
where A corresponds to the classical amplitude.

In the presence of weak perturbation (8#0) we use the
full Hamiltonian (2.1) which yields the following eigen-
energy and eigenstate of “n quanta’:

=Fwln+23) + £ Bm(i/ 2mw )

X (4n® + 6n% + 8n+ 3) + O(), (2.10)

|n>'=ﬁn> + L7/ 16mZw)[Vin + N(n + 2)
XEVn+3Yn+ Dn+5)n+6) |n+6) —-3(2n+5)
Xmln+4>+ 15(n® + 30+ 3) |n + 2}
~Valn =D {15 = n+1)|n - 2) - {20 - 3)
NGB =) - )
35V -2)(n-3)n-4n -5 |n-6)}}+0(p?. (2.11)

The corresponding perturbed coherent state may be
given in the normalized form,

(=dx

| @)’ = exp(—2%/2) i \/_T_)n exp(i)z:;t/h’) |n)’.
n

n=0
Using (2.10) and (2, 11) in (2. 12) and considering the
fact that E, tends to the classical value (1/2}mw?4? in
the appropriate limit, we evaluate “(al x| a)” to first-
order in 8. We thus write the perturbative solution to
Eq. (2.2) as

(2.12)

x(t)= A cosyt + BA/ w?){- & cosyt
+ 2 cos3yt + L cos5yt}t + O(F), (2.13)
in which the corrected frequency is
v=wll+ & BAY &®] +O(5). ((2.14)

Our solutions (2.13) and (2.14) are exactly the same as
obtained by Bradbury et al.” using a WKB type approxi-
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mation with Fourier series expansion technique, Fur-
ther, the characteristic interdependence of the frequen-
cy and amplitude in a nonlinear system is clearly ex-
hibited by the first-order calculation.

Recently, Lakshmanan and Prabhakaran® have ob-
tained an exact solution for this particular problem in
terms of Jacobi’s elliptic functions. So, it is of interest
to show the consistency of our perturbative result with
the exact one for low § approximation. For example,
the exact frequency of the x® anharmonic oscillator is
given by?®

v w 8A* BA4 )] 1/4
4K (k) ~ 4K(k) [(1 " mw2> (1 T S ’

where K(£) is the complete elliptic integral of the first
kind and its modulus % is given by the expression

1 ga* par Y
kzZE{l-(1+W)/[1+mw2\)<1+3mw2)] }

For small 3, the above expression for the frequency
becomes

v ~_(_4_)_[ 5 A%
4K(k) " 27 "6 m

where we have used

B= g BAY mw® and K(k)={(n/2)(1+%p? for k<1,

(2.15)

]+o(32>,

Thus we find that our perturbative solution for the
angular frequency given in (2. 14) agrees exactly with
(2.15) which is obtained from the exact one in the weak
coupling (small B) approximation. As far as the ampli-
tude x(f) is concerned, our expression (2.13) agrees
numerically with the exact solution of Ref. 8 for small
values of 6.

Ill. THE CASE OF COUPLED NONLINEAR
OSCILLATORS

In this section we shall deal with a system of two
weakly bound oscillators with quartic couplings, The
same problem has been analysed quantum mechanically
by Bank, Bender, and Wu.

The Hamiltonian of the system is given by

H= Pf/2m1 + by 2m, + %mlwfxf+ %mz“’g’é

+(p/ d)ax; + bxs + cx24?], (3.1)
where the equations of motion are

X, + wix, + (p/m,)ax} + zex3lx, =0,

Xy wlx, + (p/m,)[ba2 + Sextlx, =0, (8.2)

Proceeding as before, we may write the perturbed two-
particle coherent state as

| @)= oy, a,) = exp[~ (X2 + A2)/2] 1'%;_0_-%,:7[2_@_)”_2
Xexp(zE:’ ngt/ﬁ))nli nz)’ (3.3)

in which the perturbed energy and eigenstate of harmonic
oscillators are

E’ = ("1+

1 3
nyeng Ww, + (ny + Hhw, +

X (205 + 2y + 1)+ §pb(B/ 2m,w,)%(20% + 20, + 1)

ipalh/2m,w,)?
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+20c(B/ dmyw maw,)  (2n,+ 1)(2m, + 1) + 0(p?)
(3.4)

[y, m5)" = |y, m,) + pa(h/ 4m3w})

X[ =3Vl + Dy + 2)(n, + 3V, + 4) |my +4,m5)
+ (2ny + 3y + 1), + 2) |1, +2,my)
- (2ny = DVny(ny, = 1) |, = 2, mp)

+ 5V (ny = Dlng - 2)(n, = 3) |ny — 4,n,)]
+ 1pb(h/ dmiwd
X[~ 3¥(ny + Dy + 2)(ny + 3y + 4) |1y, 1, + 4)

+ (21, + 3)Vn, + D)(ng + 2) {1y, 1, + 2) — (20, = 1)

X Vy(ny = 1) |y, 1, = 2)

+ 5 Vno(n, — Dny = 2) (2, = 3) | 1y, 12, — 4)]

+50c(B/ dm,wmyw,)

X [= [Vl + 1)y + 2) (2, + Doy + 2)/ (w, + w,)]

X |y + 2,1, +2) = [V, + Dln, + 2hny(n, ~ 1)/ (w0, = w,)]

x |+ 2,1y =2 + [Viy(ny ~ Doz, + D, +2)/ (w0, ~ w,))
X |y =2, my +2) Vi (g = Dingliny — 1)/ (w0, + wy)

x | =2,n, - 2)]+ 0(p?). (3.5)

Substituting (3.4) and (3.5) in (3. 3), and retaining terms
up to the first-order in p in the algebraic calculation in
which we have taken appropriate classical limits, we
obtain the perturbative solutions:

x,(t) = A, cos,t + (pa/ m,)AY/ 32w (cos3y,
~6cosy,t) - (pc/m )NA,AY/ 32w (w, + w,)!
x cos(y; + 2¢,)1

+{w; - w,) cos{y, - 20,)¢}F + O(p?), (3. 6a)
2,(8) = A, cosit + (p°/ m,) (A5 32w (cos3yy,t

~ 6 cosi,t) - (pc/my)(A,AY 32w,)

X {{w; + w,y)t cos(d, + 29t

—(w, = w,) ™ cos(, ~ 24t} + O(p?), (3. 6b)
in which
P = w,[1+ (o/8m,w)(3aA% + cAZ)] + O(p?), (3.7a)
by = wyl1 + (p/ Bim,w2)(3DAZ + cAD)] + O(p?). (3.70)

The expressions in (3.6) have a resonance form that is
easy to interpret. Considering the first oscillator, we
may think that the second coordinate oscillating with a
time dependence given by cosy,/ results in a forced mo-
tion on the first coordinate, and hence, the denominator
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is of the usual resonance form. The same argument is
applicable to the second oscillator as well. Further, the
effect of the nonlinearity in the coupled system has been
manifested through the interdependence of the ampli-
tudes and frequencies of both the oscillators.

As a special case, we recover the well-known Duffing
equation

¥+ wlx+ex®*=0,

from Eqgs. (3.2) in the limit b=¢ = 0. In this limit,
solutions given in (3, 6a) and (3. 7a) coincide exactly with
the result recently obtained by Bhaumik and Dutta-Roy.*

Finally, we remark that the same procedure can be
extended with much computational labor to evaluate
higher order terms in the perturbation series. However,
we shall not do this here because the general features
of the nonlinearities as well as the characteristics of a
coupled system are contained in our first-order results
or amplitudes and the modified frequencies in the weak
coupling limit.
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On the Majorana transformation
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Some properties of the Dirac equation in its four- and two-component forms suggested by the Majorana
representation of Dirac matrices are derived. Extension of the ideas to higher spin is also given.

INTRODUCTION

In 1937, Majorana! proposed a representation of Dirac
matrices with

5, O 0 -1 o, 0
B=

®3=\ g v T

?
-~ 0,3

0 -0
(1)

where the o; are a representation of Pauli matrices.?
This leads to®

YE=v and vI=-7,, (2

and for solutions ¥ of the Dirac equation

Hy(x) ={a - P+ mBho(x) = z;—, v(x), (3)

where m is the mass, P the momentum operator, and
where x stands collectively for the space coordinates x
and the time coordinate £, one has the simple charge
conjugation property, that y¢=y*..The representation
of Eq. (1) is only one of several equivalent representa-
tions of the Dirac matrices,* all of which have particu-
lar utility in that they exhibit aspects of Dirac theory
more clearly than can representation independent argu-
ments. As particularly emphasized in Ref. 4, different
representations also suggest unitary transformations of
the theory to forms of the operators and wavefunctions
useful for particular applications.

The purpose of this paper is to explore in some de-
tail particular unitary transformations of Eq. (3), utiliz-
ing a modified Majorana representation with’

0 -1 oG 0
_1 0 b B:

oo 0

L= y 3= 3 (4)

0 - 0 ~0

the change from Eq. (1) being convenient for discussions
relevant to elementary particle physics. In the next sec-
tion the unitary trasformations of the Dirac equation will
be derived, followed by a discussion of the two-~compo-
nent form in this representation and the extension of

the spin one-half results to higher spin.

UNITARY TRANSFORMATIONS

A general unitary transformation U(R, &, 6) is defined
by

U(R, &, 6) = exp[iR - 86] (5)

where 8 and & are, respectively, a real number and a
real unit vector and R is a 4X4 matrix made from the
Pauli matrices and the 2X 2 identity, subject to the
restriction® '

R=-R (6)
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so that UT=U",

A well~known example of Eq. (5) is the Foldy—
Wouthuyson (FW) transformation’ with R=Ba, &=D,
and tanf=P/m leading to the transformed Dirac
equation

. d
EB¢Fw:1'éT Drws (7
with E=(m?+P®/2 and
EBg= UFWHU;‘W’ Qrw = Upw. (8)
Another well-known example of Eq. (5) is the Cini—

Touschek (CT) transformation® with R=ag, &=, and
tand=m/P leading to the equation

EQ"I;(PCT:Z"Z%GPCT (9)
with

Eq - P=U HUL,,

$er=Ucp¥. (10

Both of these transformations can be motivated by par-
ticular representations of Dirac matrices, the FW trans-
formation by the representation in which g=¢ 3), and
the CT transformation by the representation in which
a=(} %), and which has (} %) =i a30,=~ v;. Both of
these transformations, also, have the property that
R:8R-&=-1 so that a form for the exponential opera-
tor in terms of sin(6/2) and cos(6/2) is possible as for
the rotation operator, and this property will be main-
tained in the operators discussed below.

One can look at the modified Majorana representation
Eq. (4), as an exchange of the roles of P; and m by com-
parison to the representation with o= (§ ‘30), useful in
the high energy limit when m/P<< 1. So the modified
Majorana representation will be useful to describe the
physical situation in which P,/(m? + P})! /2« 1, that is,
when the transverse momentum of the particle is large
compared to it longitudinal momentum, Corresponding
to y5 in the high-energy representation, the chirality
operator, there is an operator K =ig;Ba, which in the
modified Majorana representation has the form

X 10
K:wleaZZ(o ~1>.

In the Majorana limit, when only the transverse mo-
mentum is important, one expects to have simultaneous
eigenfunctions of X and the Hamiltonian, and perhaps
to make interactions with projection operators 3(1 £ K)
in analogy to chirality projection operators 3(1£y;).

(11)
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The first unitary operator to construct is the one that
brings the Dirac Hamiltonian into a form E times an
operator that commutes with K. It is clear that R must
be some other matrix than S« since

exp(za - €80)H exp(— 3 a - 86)
=@ P+(mcosfd-é.Psinb)a
+(msind+&.Pcosf—-8&-P) -8 (12)

and the desired transformation cannot be given by this
simple form. In fact, the result requires the product of
two transformations of the type shown in Eq. (12). Such
a product has the general form

AP :exp[A +B—?TOS)31[A, B.
1

+(%z ( - 519‘161) [4, (4, B]_]_J, (13)
with
A=3a-886,,
B=}q-8,86,, (14)

[éx b1, é292]- =0,

This form may be derived by letting f{z) = exp(Az)
Xexp(Bz), taking the derivative, then integrating and
choosing z=1. Since only commutators of o are involved,
the results is true for all spins by defining & and 8 for
general spin. A double transformation like Eq. (13) is
seen to introduce a rotation, in addition to a unitary
transformation of the FW and CT type. In detail, one
finds the transformation

“ . d

ER 'ba:id)MAJ:Z—a; Dmass (15)
with

Hyss= ER -bay = Uy . s HU 15

(16)

Suar= Unas¥s
where

Uay = exp[sR - b tan (P, /0)], amn

Ri=aroy, R;=Bag, (18)

b={(Py, P,, m). (19)

The new Hamiltonian Hy,; is a linear combination of
a: and B with the matrix form

c-b 0
0 —0013

Hyp=E (20)

As noted previously, this form ought to be useful when
the longitudinal momentum is small. It commutes with
K and so the eigenstates can be simultaneous eigen-
states of Hy,; and K,

There are, of course, other unitary transformations
of H that commute with K. In fact, any transformation
that eliminates @, from the Hamiltonian and leaves a
linear combination of a. and 8, give an H " that com-
mutes with K. For example, the result for the trans-
formed Hamiltonian in Eq. (12) when &@=7P,, in order to
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eliminate a,, is that tand=P,/m, R=Fa to give
exp{3Ba; tan™ (P, /m)] exp[— $Ba, tan™ (P,/m)

=qu- Pu+ (m?2+ P22, (21)

It is often simpler to look at the unitary transforma-
tions of H from the point of view in which the desired
forms are obtained by the transformation of Eg = Hyy.
In this case one has the following results:

E3~aq-P+mpB: R=oab, ézla, tanf =P/m;
Eg~Eg.P: R=aB, ézf’, 0=1/2;
EB~au-P.+Vm?+PiB: R=af, é=P,

tand = P./(m? +P§)1 /2.
Eg~E/ba.-P.+mB}: R=apB, =D, tanf=P,/b;-
EB =Py, +b3: R=0B, &=D,, tanfd=P,/b.

Another way of finding particular unitary transforma-
tions of the Dirac equation when the method shown in
Eq. (13) would prove cumbersome is to construct the
transformation by analogy with a simpler one, looking
at the Pauli matrix structure for guidance. For exam-
ple, the only differences between Eq. (10} in the repre-
sentation of Dirac matrices with a=( %), and Eq. (20)
which is in the modified Majorana representation, are
the substitutions m — - P;, P ~b, and P ~b. With these
replacements, the CT transformation becomes the
Majorana transformation and the Dirac Hamiltonian in
the a=(§ %), 8=(}) representation becomes the Dirac
Hamiltonian in the modified Majorana representation.

TWO-COMPONENT FORM

As an alternative to unitary transformations of the
Dirac equation, one can decouple the upper two com-
ponents of the Dirac wavefunction from the lower two
components and obtain Hamiltonian equations for each
pair of components, such equations again exhibiting
aspects of the theory, that are less obvious in the four-
component formulation., The exact separation using the
modified Majorana representation will be carried out
in this section.

Carrying out the matrix operations of Eq. (3), using
the representation of Dirac matrices in Eq. (4) one has

0« Puly— Py +mogih, = Eq iy,

(22)
-0« Puly = Pyh,— mogly = E Uz,
where
10 '
E,.= 57 and ;L—(wL) .
Note that
by 0
=3(1+K)y, :(1-K)¢. (23)
0 Ur

Using b, defined in Eq. (19), Eqs. {22) can be written
more compactly as

[ bd)u - Pa‘ﬂL\L = Eopww

- 0-byy, = Py, = Eo iy, (24)
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so that

4y == P304, (25)
with

0=(E,+0-b)*. (26)

Substituting Eq. (25) into the first of Eqs. (24) yields
(o-b+P2O)Y, = E iy 27

Solving Eq. (26) for E_, and substituting the result in
Eq. (27) gives a quadratic equation for O with solutions

0=[-0o-bx((0-0)2+ P /2]/P2, (28)
so that
+((0-b)2+PY 2y, =E_3,. (29)

If the original wavefunction ¥ is normalized to unity,
then ¥, and ¥, are not normalized. However, one may
take as the normalized two-component wavefunction, ¢,,
defined by
¢,=(1+P§0'0)* 2y,. (30)

Expanding this equation when P, is small compared to

b, one has
PZ 1/2
(eghe)]

which only makes sense if the upper sign is chosen in
Egs. (28) and (29).

b2 ba

¢u=ﬁ{1 +§§*f;§ (31)

The two-component equation for the normalized lower
components may be derived in a similar way, the re-
sults being identical except for an additional minus sign
in the results corresponding to Egs. (25) and (29).

In all the above considerations, care has been taken
to explicitly exhibit the ¢- P matrices. This proves im-
portant when an interacting Dirac particle is considered.

This kind of reduction to two-component forms using
the modified Majorana representation is analogous to
the separation into large and small components when the
Dirac—Pauli representation® of the matrices is used,
and, in fact, can be readily related to the Majorana
transformation of the Dirac equation just as the Dirac—
Pauli reduction is related to the FW transformation.

HIGHER SPIN

To discuss the higher spin realizations of the Majorana
transformations, one requires a Hamiltonian formula-
tion of the wave equation. The description due to
Weaver, Hammer and Good'’ will be used here, In this
description, the wavefunction ¢ is 2(2s + 1)-component,
representing a particle and antiparticle with spin s,
and satisfies the wave equation

Hy=50, (32)
where (H,)2=FE?. H, depends on E, m, P, and four
2(2s +1) square matrices o and 8. In general, H is a
nonlocal operator. There is a well-defined prescription
for finding H,, and the spin 3 result is shown below and
will be studied as a typical example of higher spin,
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showing all the complications, i.e.,

31/{2G =[(2E2 +7P2)mB + (BE%+20p¥)a - P
- 9m(a - P)? — 18(a - P |/2(E2 + P?), (33)

The problems with higher spin occur because the cha-
racteristic equation for the spin matrices becomes more
complicated as the spin increases.!’ The simple equa-
tion (s8-8 +2) (s.&—3) =0 for spin one-half, leading to
(0.8)?2=1, becomes (-2 +3)(s.8+3)(s-8=3)(s-&=3)
=0 for spin three-halves leaving cubes of spin matrices
in a particular direction as the maximum spin matrix
powers, rather than the first power as for spin-one-half.
This leads, as discussed in Ref. 4, to a more compli-
cated general form of the unitary operator required to
make transformations analogous to Eqs. (16) and (21).

To explicitly discuss the transformations of H; /, re-~
quires a definition of @ and 8, i.e.,

s 0 01
10/’

1

2 -
a 'é ) B= (34)

0-s
so that @ and 8 anti-commute. In place of Eq. (5) 2
more general form is required with the structure

Us 12(R, &, ¢, $1) =exp[3R -0, + 3R -8)%0 ], (35)

suggested by the above discussion of the characteristic
equation. Again ¢, and ¢, are real, as is &, and R'
=~R. In view of the spin complications, it is particular-
ly simple to investigate the connection between the spin
three-halves Foldy—Wouthuyson form of the Hamiltonian
EB8 and other forms. Some results arising from the
equation

U3 /g(aB, é ’ ¢)0; ¢1)EBU; /Z(C!B, é: ¢0; ¢1)
={cosN +3(cos@ — cosN)3(a - &% - 1) BE
+[2sinN + (5 5inQ - sinN)($(a - 8)2 - §) 3o - &E,

(36)
where

N:¢0_ ¢)1/4,
(37
Q:3¢0—%1¢1:

are listed below:
Eg ~HYES: &=D, tanN=P/m, tanQ =[(3E%+P%/m?|P/m;
E8~Ea P -%a PVl =P, N=Q=1/2;
EB~mB+a- P -4a-P)?IP: ¢=D, tanN=tanQ =P/m;
EB ~Pyas(f ~402) +bB: €=P,, tanN=tanQ =P,/b;
EB~a-PY¥ ~Ha.Pu?]+ (m?+P3)/2:
8=D., tanN =tanQ =P./(m? + P2);

E8 ~E/bla- P -Ha-P)2]+mp}: =P,

tanN = tanQ =P./b.

(38)

One sees that replacing « .k for spin one-half, the
projection of « in the k direction, by the spin three-
halves expression a - k[}} - $(a -k)?], all the spin one-
half forms of the transformed Dirac Hamiltonian can
be obtained for spin three-halves, and that the corre-
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sponding unitary transformations are well-defined, and
completely analogous to the spin one-half results. This
result has been discussed previously, in Ref. 4, in con-
nection with the generalization of the Melosh transforma-
tion®? to higher spin, but it is seen here to apply to all
forms of the transformed Hamiltonian and the related
spin projection directions.

It is much more difficult in the spin three~halves
case to construct the unitary transformation from H,' /3¢
to the forms in Eqs. (38) because of the greatly in-
creased algebraic manipulations. One can, in principle,
however, work out all the transformation operators
using the form

exp[3R-89,+ (R -8)%¢,]
=cos(N/2) - 3[cos(Q/2) - cos(N/2) [$(R - 8)% + 1]
+3R - &2 sin(V/2) - [3 sin(Q/2) - sin(N/2)]
x[#R-&?+3T, (39)

where R must be af with @ and g as given in Eq. (34) or
the alternate form with a=2(3%), and 8=( %), or any
other definitions such that R' =~ R and R has the eigen-
value spectrum of the spin three-halves matrices so
that the characteristic equation causing closure of the

products of the matrices holds,

DISCUSSION

Many aspects of the Majorana representation of the
Dirac matrices « and 8 have been discussed in detail,
including transformation of the Dirac Hamiltonian to
useful forms, and the complementary reduction to two-
component equations for the positive and negative en-
ergy eigenstates. Of course, one can equally well con-
vert other physical operators to transformed forms
using the same methods, well-known in the case of the
FW transformation. In addition to the spin one-half re-
sults, many of the ideas can be extended to higher spins
as noted in Ref. 4 and carried out in some detail here
for the spin three-halves case.

In many respects the Majorana transformation and
aspects of the Melosh transformation'? are comple-
mentary. In the latter case one deals with the set of
Dirac matrices that has o3 = (}) %), and one has in a lim-
ited way interchanged P; and m with respect to the
Dirac—Pauli representation and the FW transformation.
This leads to discussions appropriate when the longi-
tudinal momentum is large compared to (m?+ P}/
whereas in the Majorana case it is the inverse ratio
that is appropriate for consideration.

All of the results derived in the preceeding sections
have pertained to the free particle. This has allowed
exact results to be obtained both for the unitary trans-
formations and for the reduction of the four-component
Dirac theory to a two-component form, It is, of course,
very important to investigate the same problems with
some external potential. In general, exact results can
no longer be obtained, but there are some special kinds
of interactions which permit exact results, for example,
a constant magnetic field with or without an anomalous
magnetic moment interaction, as well as other kinds of
additive interactions that commute with the unitary
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transformations or still allow exact reduction to be
carried out.'® Looking at the reduction to two~component
form, for example, in the presence of a constant, ex-
ternal magnetic field B in the z direction, and with an
anomalous magnetic moment interaction of the form
(igk/4m)BB - (e X @)/2 with ¢ and « the charge and anom-
alous g factor, one finds the two-component equation

£ [P+ (0 m+moy — quB/am)* 1 20, = Eqd. (40)
Although this is an exact result, it is almost as compli-
cated as the four-component form. One can, however,
carry out a unitary transformation of Eq. (40) with the
operator

V:exp[%oso°mtan'1(l1u|/m)] (41)
useful because
V(g:m+moy) V' = (m? + (0. 7)) 20, (42)
The result is
+{P? + [(m? + (o - 1)) 20, — gxB/4m P 2V,
= Eoydu, (43)

a form which is diagonal when one takes V¢, to be a
simultaneous eigenstate of P;, (o.7.)% and o;. This af-
fords a simple way of getting the exact energy eigen-
values compared to the usual methods. 4 1t is not clear,
of course, how far one wishes to pursue such a two~
component formalism since the separation of the four-
component wavefunction into two~component functions
is broken by a special Lorentz transformation in the z
direction.

One may, in the spin one-half case, note that the
transformed Hamiltonian’s of Egs. (20) and (21) are
invariant to the general K transformation ¥’ = exp(iK5/
2)¥ with 5 a real number. This is the Majorana equi-
valent of y;-invariance and it also holds for the free
particle Dirac equation when P, =0, since the formal
result of the unitary transformations is to eliminate op-
erators {(e.g., a,) that do not commute with K, The
corresponding invariance in the representation that has
a3 = %) is to the transformation exp(ia;5/2), and the
Melosh and related unitary transformations are con-
structed to remove operators that do not commute with
3.
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Canonical transformations and phase space path integrals
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A previous discussion of canonical transformations and path integrals is extended to the phase space path
integral method. Within this approach a broader class of canonical transformations can be introduced than
within the Lagrangian approach, including coordinate transformations and essentially all infinitesimal

tranformations.

1. INTRODUCTION

The great importance of unitary transformations in
quantum mechanics and their correspondence with
classical canonical transformations is something which
need hardly be stressed, Consequently the definition
and employment of these transformations in the context
of the path integral formulations of quantum mechanics
is of interest. Although unitary matrices can be easily
used to transform path integrals, the problem has been
the identification of the transformed variables with the
correspondingly transformed classical variables.

In a previous article! the author has exploited Dirac’s
discussion of the classical limit of a path integral in
order to make the identification. The discussion was
limited to the Lagrangian path integral method and only
a limited class of canonical transformations could be
defined and carried out,

In the following, the same kind of analysis is applied
to the more general phase-space path-integral method.
We find that essentially all of the infinitesimal canoni-
cal transformations can be applied to path integrals with
a clear correspondence between the classical and
quantum generators, Those finite transformations that
can be built up from repeated applications of in-
finitesimal transformations follow obviously, As for
intrinsically finite transformations, it is found that a
limited but somewhat more general class than that of
Ref. 1 can be defined, The ordering problem-—that is,
the ambiguity inherent in all known quantization pro-
cedures’—is discussed at several points, particularly
as it complicates the consistent carrying out of quanti-
zation with different sets of canonical variables.

In Sec. 2, aspects of the phase-space path-integral
method are reviewed briefly, The discussion parallels
one of Pearle’s® somewhat, but is given here to estab-
lish our notation and point of view, In Sec. 3, in-
finitesimal transformations are discussed, and finite
transformations in Sec. 4.

2. PHASE-SPACE PATH-INTEGRALS

In this section we discuss the phase-space path-
integral in terms appropriate to the sections that
follow, We consider a nonrelativistic system with m
degrees of freedom and begin with the propagator
K{q;,q¢, 1, 1y) so that

gy, ff):f K(gy, q4, &5, 1) ¥lay, ty) dqq. (1)

Three properties of the propagator are of concern to us.

490 Journal of Mathematicat Physics, Vol. 17, No. 4, April 1976

First, it must be a unitary matrix. Second, it must
have at least the semigroup property

K@",q,t",0)= [ K@", &', , 1K@’ q,t",)d"q’", _ (2)

where t” > ¢’ > ¢, Third, it must approach the identity
as the time interval vanishes, i.e.,
limK(q’,q,t', t)zém(ql_q)- (3)

Bt

From (2) we can construct the lattice expression for a
general path integral

Nzt

Zl)(qf, tf) :]].VIIE f d)(qO’ to) YI;[O K(qmla qny tn*l’ tn) qum (4)
where qy=qy, ty=t;, tn=t,+c and e= (¢, —t,)/N. Now
we seek a first-order approximation for the propagator
in (4) for e small, We write the propagator in the form

K@’ q,t+e, ) =@m)™ [ K(p,q',4,t+e,1)
XeXp[(i/ﬁ)Pi(ﬂ‘Qi)]de- (5)

The function X is not uniquely defined by (5) but can be
expressed, for example, as a line integral in the 2m-
dimensional g, g’ space, i.e.,

K(p’q” q, t+€’ t)
= [,K(@’,a,t+e, D) expl~ (/R pi(a} - q))d™a’ - q), (6)

where ¢ denotes that some function f (g, ¢) is held con-
stant. The limit in (3) becomes

1im/<(p!q,7q’t+€’t):1’ (7)
€0

which is, unlike (3), a continuous limit, Now we can
approximate K to first-order as

K(P,(]',q,fﬁ-e,t)
=1- (i/WH(p,q',q, e ~exp[- G/MH(P,q',q,De]. (8)

Unitarity of K then determines that, if K is chosenso
that H is a symmetric function of ¢; and g}, H must be
real, From here on we assume that this is always the
choice that is made. H is still not specified uniquely,
however. The propagator now takes the form

K(ql’ q’ t+€’ t)
= 2ra)™ [ exp{(i/m)p:(a}-a,) - H(b,q",q, eltd™
(9)

and (4) becomes
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Nei
$ap ) =Vim | 90, 0) (/M) 23 [P = )

N=1
- H(pm dnetsDns t)f])(z'”ﬂ)-ﬂm n];Io dmpnqum

(10)
Formally taking the limit, we obtain the usual phase-
space path-integral

wlag,t)= [ expl/m [, (pidas - Holp,q, 1) dtl}

x DpDq ¥(qq, ) d™q, (11)

with

Hﬂ(paQst)zl-'ing(p9q'7q1t)- (12)
The classical limit argument of Dirac? can now be
used to identify H, with the classical Hamiltonian func-

tion. If desired, the Hamiltonian operator can be re-
constructed from H in the usual manner, > The am-
biguity in H mentioned above corresponds to the differ-
ent ways in which the p and g operators can be ordered
in the expression for the (unique) Hamiltonian operator,
Note that we have taken the e —~ 0 limit before the Z7— 0
limit. A brief discussion of why this is done and what is
meant by it is given in the Appendix,

Path integral quantization may be regarded as an
attempt to reverse the procedure discussed above. The
well-known operator-ordering problem? manifests it-
self in the ambiguity of the passage from H; to H where
different choices can lead to different propagators, We
thus have two closely related operator-ordering
ambiquities,

As is well known the p integrations in (8) can often be
carried out explicitly, and if H is quadratic in the p’s
the usual Lagrangian path integral is obtained,

3. INFINITESIMAL TRANSFORMATIONS

Since the Hamiltonian is the generator of an in-
finitesimal unitary (canonical) transformation, we
expect that we can use the phase-space path-integral
as a model for the expression of such transformations
in a form suitable for use with path integral propaga-
tors. ® Let us consider a one parameter group of unitary
transformations with s labeling the parameter. The cor-
responding unitary matrices are the U(@,q, s) so that

x@Q = [ UWQ,q,s)(g)d™. (13)
They have the group property

UQ,4,51+s)=[ UQ,q", ) Ulg’,q,s) d"q’ (14)
and the limit

lirgl U(@,q,s)=06"Q-4q). (15)

-
The finite transformations can be built up from the
infinitesimal ones, i.e.,

N-1
xQ@=1m [ @) 11 Ui, dn A5) A4, (16)

where g¢; =q;, g5 =@;, and As=s/N, The clear
analogy with Sec. 2 allows us to immediately write
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U(Q,q, as)= 2ei)y™ [ expll/m)[Py(Q; - q,) - G(P, Q,q)as]}

xXd™P am
for the infinitesimal case, and
Naf
x@=1im [ v(a) ex (/M 2 [Puslan - 00
o iy
N-y
- G(Pm Gnets qn)As])(Zn-ﬁ)'N’" Il d"P,d"q, (18)
n=0

for the finite case., We can again take the formal limit,
obtaining

x@Q) = [ expl/m) [,*[Pi(s") daj(s’)
- Gy(P,q")ds'|}DPDq"y(q) d™q,
with ¢(s)=@;, 9i{0)=g;, and

(19)

Thus a unitary transformation that can be built out of
repeated applications of an infinitesimal transformation
can be represented as an abstract “path integral.”

Now we wish to consider the transformed path in-
tegral and, by repeating the classical limit argument,
identify G, with the classical generator of the corre-
sponding canonical transformation, When doing this
we must use (19) even if we are only concerned with
the infinitesimal case, since a transformation of the
form (17) will not remain infinitesimal as % approaches
zero independently of As, The transformed propagator

E(Qﬂ QO: tf: to)
=] U@ 45 K @52 a0, b, ) U* (@0, 4o, 5) d™q0 705
= [ expl/M] J," (Pyi(s") daju(s) ~ Go(Py, a) ds’
+ f,:s (p;dq, ~ Hydt) - fos (Py;(s") dgi;(s”)

~ Gy(Py, g§) ds")}DP;DqDpDgDPyDgy, (21)

where g (0)=q,, g;,(s)=@Q,, etc. If % becomes very
small we get phase cancellation unless the real and the
abstract paths satisfy

s , ¢
o{ Jo*[Prs dafs - Go(Py,ap)ds’) + [, " [ pydas - Hy(p,q, 1) dt)
- JT [Py dghy - Gy(Py, q3) ds’ ]} =0, (22)

At this point we can let s = As and consider it small on
a macroscopic scale so that, to first-order in As,

6{Pi(Qpi ~ q5s) — Go(Py, qy) A8 + ft;f [pida; - Hy(p,q,t)dt]
— Py (Qqi — dos) + Gy (P, q) As}=0, (23)

where 6@y; = 06y; =0. The variation yields, in addition
to the usual Hamilton equations,

3Go(Pr,4y)
Pri~bpi=- 1P,97) o

_ 3Gy(Pyrqy)
Qi ~ 45 = 2P, As, Bdps )
9GP, Go(P,
Qi — o = ___o(P_o_,___Qo) as, Py ~pyy=- 960(Po, o) ¢, (24)
9Py 9o

Since the endpoints are arbitrary, Eqs. (24) give essen-
tially the usual transformation equations. We could of

course have carried out the variation (23) first and then
let s become small with the same results, Thus we can
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identify G,(P, ) with the classical generator of the
transformation, We note that there may be many G’s
corresponding to a particular G;, thus confirming the
well-known many-to-one relationship between unitary
and canonical transformations.

4. FINITE TRANSFORMATIONS

Now we wish to consider intrinsically finite unitary
transformations. We hope to be able to express them in
terms of the generating functions Fy(Q,q), Fy(P,q),
Fy(@,p), and Fy(P,p). Starting with F;, which is sim-~
plest, we look for a transformation matrix of the form

U,(@,q9) =Ry(Q, q) exp[- G/MF;(Q,q)] (25)

which is a slight generalization of the form considered
in Ref. 1, Such a matrix will be unitary if

F1(Q, q) :AU(Q)ali(q) +B1(Q) + bl(q)»
R{(Q,q)= @)™ /*D}"*(Q, q) (26)

where

—qet(_EFL
D@, a)= det(aqi aQi) ’

analogous to the Van Vleck determinant, ® In addition,
the A; and a; must be unbounded, single-valued func-
tions of the @; and q; respectively, as if they defined
point transformations.

As before we identify our Fy with the corresponding
classical generating function by considering the classi-
cal limit of the transformed propagator. The new
propagator is
K(Qy, Qoy 1y, 1)

. t
= @)™ [ expl/m)(~ Fi(Q,a0+ [, (bidq; - Hyat)
+ Fy(@,, ro)]}D} /2(ny CIf)D% IZ(QO’ 40)DpDq d™q, d™q,.
27
If D}/? is a reasonably smooth function, by considering
the classical limit and carrying out the resulting varia-

tion as before, we are led in a straightforward way to
the appropriate transformation equations

oFy
d — P. = e T .
Pi=%g > T 5,
We note that, as in Ref, 1, a special case of U, is the
transformation to the momentum representation

U (p,q) = @ar) ™/  exp[- (i/m)p,q;]. (29)

This notation, though perhaps slightly confusing, is
unambiguous and will be useful in what follows.

E (28)

We now consider the transformation matrix Uy (P, ¢)
defined by

@(P)= [ Uy(P,q)¥(q) d™q. (30)
As before we look for matrices of the form
Uy (P, q) =Ry (P, q) exp[~ (i/B)F,(P, )] (31)

and again find that R, and F, take forms equivalent to
(26). The transformed propagator, however, must have
the form
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K(Qy, 4, 1y)
=J UF®P;, QU,(P;, 4K 4y, 44, by, 1)
X Uf (Py, g ) Uy (Py, Q) d™ Py d™q, d™ Py d™q,
= (2777{)'2"'_[ exp{(i/ﬁ)[PfiQﬂ - Fy(Py, q4)
+ ft;f (pydq; - Hydt) + Fy(Py, q) - Py, Qql}
x D3'*(Py, q,)D}/*(Py, q,)DpDq d™P; d™q, d™Pyd™q,.

(32)
Considering the classical limit yields
_AF L, R
Qz—api; Pi“aqi (33)

as expected. The same reasoning can be applied to ob-
tain matrices U3(@, p) and U,(P,p). Among the U, class
of transformations are the coordinate transformations
for which

Ay (P)=P;, By(P)=by(g)=0. (34)

Once we have drawn the correspondence between a
class of unitary transformations of the path integral
and the appropriate classical transformations, we can
ask whether one can now carry out path integral quan-
tization with different sets of canonical variables and
obtain consistent results. If the conventional canonical
quantization procedure is attempted naively, inconsis-
tencies appear which are due to the operator-ordering
ambiguity. ® We naturally expect an analogous situation
with the path integral method. We will illustrate this
with a very simple example—a coordinate transforma-
tion applied to a free particle moving in one dimension,
We will compare the results obtained by quantizing in
the transformed representation with those obtained by
directly transforming the original propagator.

It is sufficient to work with the propagator for an
infinitesimal time interval which is

K(g’,q,t+e, 1)
= @) | exp{i/mpla’ - 9) - (p*/2m)e]} dp. (35)

Using this and the transformation matrix

172 ;
U(P,g)= (Znﬁ)-llz[a_‘;‘_(zq_)] exp[- —;—a(q)P]

(36)
in (32), we obtain
K@, Q,t+e, t)

= @i [ exp{G/M[PQ’ - Q) - H(P,Q",Qkl}aP (37)

with
HP, @', @)
=3[} Q) a/HQ) + & HQ) a7 (@] ép—;
2 2 g-1
TR 38)

where d(Q) =dq/dQ if @ =a(q). To get this result, the
expression exp(- fep?/2m#%) has been approximated to
first-order in ¢ in intermediate steps. There are of
course other equivalent forms for H(P, @, Q") but all
contain some sort of “extra” term such as the last
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term in (38). This is due to the awkwardness of ex-
pressing propagators corresponding to Hamiltonian
operators containing terms such as #*f(g)(d/dq)g(q)

X (d/dq)h{g) in path integral form., The “extra” terms
proportional to the curvature scalar R that appear when
path integral quantization is carried out in curved
spaces® are of similar origin.

Path integral quantization in the new canonical varia-
bles can be carried out, but leads to the question of
which form of H(P, @, ') corresponding to

Hy(P, Q) =d*(Q)P%/2m

is to be used in (37). Equation (38) is a far from ob-
vious guess. By comparison, in the canonical quanti-
zation procedure one would have to guess at the operator
n? 724 anl
- 2|4 a@

2m

(39)

to correspond to H,

There remain many canonical transformations which
cannot be put into the forms we have discussed. We
should mention a notable example, the transformation
of a harmonic oscillator to the energy representation.
This can be accomplished classically by an F, propor-
tional to ¢ cot(P) but the corresponding U, is not
unitary, failing to satisfy the requirements for {26),
This corrésponds to the fact that P would be a phase
variable which cannot be observable (Hermitian) due to
the boundedness of H, It is probable that a much wider
range of canonical transformations can be dealt with in
a path integral context, but accomplishing this re-
quires a discussion of the classical limit that is more
general than our quite straightforward one.

APPENDIX

The invoking of Dirac’s classical limit argument in
Sec. 2 must be regarded as merely suggestive for
various reasons and we give here a more careful analy-
sis. To begin with, one cannot merely take the limit
#—0 in (10) while holding ¢ fixed since approximation
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(8) would be violated. On the other hand, if one takes
the limit ¢ — 0 first, one cannot really regard (11) as
a well-defined expression for the propagator, since it
does not distinguish between the various choices for
H(p,q’,q,t) which would give different propagators but
the same H;. As a result, we argue in the following
fashion.

We begin with (10) and let 77 and ¢ become small, ¢
shrinking at a faster rate, so that each term
H(Duy Iy, 4y /7 remains small. The number N be-
comes correspondingly very large so that the sum over
n becomes large. Then when the entire set of p,’s and
q,’s are varied, there are large variations in the total
phase of the exponential except near the set that gives
stationary phase. This set is defined by

Nai
b {E [pni(q’ui i Qni) - H(pm Dnety dny t)E]}:O, (40)

n=0
with 8gy; = dgy; =0. On a macroscopic scale, where

7 can be considered negligible, ¢ can be considered
negligible a fortiori, and so we make the lowest-order
approximation in (40), giving

5 f [pidg;— Hy(p,q,t)dl]=0

as desired. At other points in this article where the
Dirac argument is invoked, it can be understood in the
same way.

(41)
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Numerical experiments on the Calogero lattice*
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This paper presents the results of computer experiments performed on one-dimensional, classical
mechanical, N-body systems whose point particles interact pairwise via the potential V(r)= ar’+br~?,
where r is interparticle distance and where @ and b are positive constants. When each particle interacts
with all other particles, the numerical experiments indicate that the system is mathematically integrable for
either free-end or fixed-end boundary conditions. On the other hand, when each particle interacts with only
its nearest neighbors, the computer detects a transition from near-integrable to stochastic behavior again for
either free-end or fixed-end boundary conditions. Our results thus support the conjecture that integrability
is highly sensitive to changes in the total interaction potential but insensitive to modification of boundary

conditions.

I. INTRODUCTION

In this paper, we investigate two related one-dimen-
sional, classical, N-particle, Hamiltonian systems. In
both systems, the particles interact pairwise via the
potential

V{¥)=ar? + br2, (1)

where 7 is interparticle separation distance and where
a and b are positive constants. In one system, each
particle interacts with all other particles, yielding the
Hamiltonian

N P 2 N-1
H=), (-2—1_) + 2. [a(Xj -X,)2+ b(X; -X,)?], (2)
NG g

where the X; and P; denote particle coordinates and
momenta and where all particles have mass . In the
other system, each particle interacts with only its near-
est neighbors, yielding the Hamiltonian

H= ]il (%) + (glé>j§{a[9m o +<§)1/4]z
oo () ]7)- (S96)"
3

where the @; in Eq. (3) are related to the X, in Eq. (2)
via X;=Q; +j(b/a)* ', with (b/a@)*’* being the equilibrium
distance between particles when only nearest neighbors
interact. The last term in Eq. (3) appears in order that
H=0 when all @, and P; are zero; the factor (8a)? is
introduced in order that the second sum reduce to
$3(Q;41 - Q;)% in the low energy, barmonic approxima-
tion. As written, Hamiltonians (2) and (3) are for sys-
tems having free ends; however, we may easily convert
to fixed ends by setting @, =@y =0.

Calogero! was the first to suggest studying Hamil-
tonian systems having the pair interaction given by Eq.
(1); for this reason we here refer to either Hamiltonians
(2) or (3) as a Calogero lattice. In particular, Calogero'
and later Calogero and Marchioro® studied the quantum
mechanical behavior of the free-end Hamiltonian (2).
Their results led them to conjecture that Hamiltonian
(2), considered classically, should be mathematically
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integrable which means that all system trajectories lie
on smooth, invariant, integral surfaces; indeed
Marchioro® earlier proved integrability for the case
N=3. Pursuant to a request from Calogero that we use
a computer to test the integrability of Hamiltonian (2)

in the classical case for N >3, we investigated Hamil-
tonian (2) using both free-end and fixed-end boundary
conditions; in addition, we chose to examine Hamiltonian
(3) using the same boundary conditions in order to deter-
mine the affect on integrability of changing the inter-
action range. After concluding our numerical work, we
learned that Moser? had rigorously proved integrability
for Hamiltonian (2) with free ends using a method due

to Lax.® We nonetheless present our results for this
rigorously integrable case in order that the computer
results for the rigorously solved case can be compared
with the results obtained for the mathematically un-
decided cases.

In this paper, a computer is used to produce evidence
in support of integrability or its lack by numerically in~
tegrating initially close trajectory pairs and establish-
ing whether the phase space distance between the two
trajectories of a pair grows linearly or exponentially
with time. Although this particular computer test is
currently the most sensitive method known when the
number of particles is greater than three, ® it must none-
theless be applied with great care. In general when ini-
tially close trajectories separate linearly with time, the
gystem is either precisely integrable’ or it is near-
integrable in the sense that most trajectories, ® neglect-
ing sets of small measure, lie on smooth, invariant,
integral surfaces. However, it is possible, as appears
to occur for the unequal-mass, hard point gas, ® for an
ergodic and mixing system to exhibit linear separation
of initially close trajectories. We here rule out this
latter possibility for Hamiltonians (2) and (3) by comput-
ing the time average single particle kinetic energies
and demonstrating that equipartition of energy does not
occur (as required for ergodicity and mixing) when
trajectory-pair separation is linear. Finally, we dis-
tinguish integrable from near-integrable behavior by
increasing the system energy and observing whether or
not a transition (the so-called stochastic transition®)
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TIME (COMPUTER UNITS)
FIG. 1. A graph showing the linear growth with time of sepa~
ration distance D(t) between two initially close [D(0)=10"%]
trajectories of Hamiltonian (2) for free ends and N=4. The
solid straight line is a least squares line fit of the data points.

150

from linear to exponential separation occurs. If such a
transition is observed, it is overwhelmingly likely'®

that the system is near-integrable rather than precisely
integrable at low energy. If the linear to exponential
transition does not occur as the energy becomes ex-
tremely large, then one has strong evidence for inte-
grability at all energies. Certainly such evidence does
not constitute a mathematical proof; however, this test
has, before the fact, correctly predicted integrability
for both the Toda Hamiltonian” and for Hamiltonian (2),
as we show here. Thus a linear separation of initially
close trajectories which persists as the energy increases
to high values must be considered as a quite strong argu-
ment for integrability. Indeed for both Hamiltonian (2)
and the Toda lattice, we continued to obtain linear sepa~-
ration between members of trajectory pairs even when
the energy was so large that our numerical integration
scheme was no longer providing accurate integration,

In regard to computer accuracy, we performed all
our numerical integrations using a standard, double
precision, fourth-order, Runge—Kutta subroutine with
a variable integration step size which usually ran 0. 05
or less. The total system energy was observed to re-
main constant to at least eight decimals. Several of our
longest runs were time reversed regaining the initial
state to at least four or five digit accuracy. Finally,
the linear or exponential separation of initially close
trajectory pairs themselves directly measure loss in
integration accuracy with time.

In the following section, we present the results of our
computer experiments, and, in the last section, we
briefly state our conclusions.

FIG. 2. A graph of the
time average, single
particle kinetic ener-
gles (E,) versus time
for one member of the
trajectory pair inves-

‘ tigated in Fig. 1, Here
101, the time average, total
"""""""""""""""" system kinetic energy
| is approximately 35. 5.
e-z The dotted, Horizontal
I line represents the

4 equipartition value of
2 2 single particle kinetic
e T energy. No tendency
0L —r toward equipartition is
0 50 100 150 observed
TIME (COMPUTER UNITS) .
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0 64 320

FIG. 3. A graph showing the linear growth with time of sepa-
ration distance D(t) between two initially close [D(0) =10"7)
trajectories of Hamiltonian @) for fixed ends and N=5,

Il. PRESENTATION OF COMPUTER RESULTS

We have investigated Hamiltonian (2) for free bound-
aries using N=3, 4, and 10 and for fixed boundaries
using N=5 and 10 (3 and 8 moving particles, respec-
tively, since particles 1 and N are fixed). In all our
calculations, we numerically set a=b=m=1. We per-
formed numerical integrations for many different initial
conditions at each of many distinct energies. All our
experiments yielded the same results; namely, each
phase space trajectory we investigated separated lin-
early with time from an initially close neighbor and
each trajectory exhibited no tendency toward equiparti-
tion of single particle kinetic energy. Typical results
are presented in Figs. 1—4. Figure 1 shows the typical
linear growth of trajectory-pair separation distance D,
given by

N 1/2
D= 21 (P ~P2+(X;-X,?] ., (4
=
versus time for free ends with N=4, Here the initial
separation distance was set equal to 10°° and the time
average of the total kinetic energy was found to be ap-
proximately 35.5. Figure 2 presents a graph of the time
average of single particle kinetic energy E; =(P,?/2m)
versus time for one member of the trajectory pair shown
in Fig. 1; no tendency toward equipartition is observed

128 192 256 320

0 64
TIME (COMPUTER UNITS}

FIG. 4. A graph of the time average single particle kinetic
energies (EK) versus time for one member of the trajectory
pair investigated in Fig. 3. Here the time average, total sys-
tem kinetic energy is approximately 7.78, making the equi-
partition value approximately 2,59 for this fixed-end, N=5,
three moving particles system. As in Fig. 2, there is no ten-
dency toward equipartition,
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0 80 160 240
TIME (COMPUTER UNITS)
FIG. 5. A graph showing the linear growth with time of sepa-
ration distance D(¢) between two initially close trajectories

[D(0)=1075] of Hamiltonian (3) using A =5, fixed ends and a
total system energy £=1,42,

030

010

—_———
0 80 160 240
TIME (COMPUTER UNITS)

FIG. 6. A graph showing that equipartition of single particle
kinetic energies (Eyp does not occur for one member of the
trajectory pair investigated in Fig. 5. Here the average total
kinetic energy was approximately 0. 53, making the equiparti-
tion value approximately 0,176,

0
1
BS _2
)
4
-5
* 80 160

TIME  (COMPUTER DWITS)

FIG. 7. By increasing the total system energy to E=3,46

for the system described in Fig, 5, we obtained the exponential
growth of separation distances D(f) shown here, indicating

that Hamiltonian (3) with fixed ends is nonintegrable.
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It

0 80 330

4. A
160 240
TIME {COMPUTER UNITS)

FIG. 8. For one member of the exponentially separating tra-
jectory pair investigated in Fig, 7, we obtained the approach
to equipartition of single particle kinetic energies (E,) shown
here. The equipartition value is approximately 0. 563,

(=

FIG. 9. This graph shows that
exponential separation of initially
close trajectories can also occur
for Hamiltonian (3), using free
ends and N=10, Here the total
system energy E =20 while the
average total kinetic energy is
approximately 10,

Log,OD
IR I

— _—

—
o 50 00 150

TIME (COMPUTER UNITS)

!

0 28 56 84 12
TIME (COMPUTER UNITS)

FIG. 10. The trend toward equipartition of single particle
kinetic energies (Ep for one member of the trajectory pair
investigated in Fig. 9. For this ten particle system, we show
curves only for particles 1, 4, 7, and 10. The equipartition
value is approximately unity.
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although the average kinetic energies of the end parti-
cles 1 and 4 tend toward the same value as also happens
for the two interior particles 2 and 3. In Fig. 3, we show
typical linear growth of trajectory pair separation dis-
tance for fixed ends with N=5 (X; =X{ =X, =X;=0).
Here the initial ‘separation distance was chosen to be
1077 while the time average of the total kinetic energy
was found to be approximately 7.78. The time average
of single particle kinetic energy for one member of the
trajectory pair shown in Fig. 3 appears in Fig. 4,
where, again, equipartition is not observed. These re-
sults were found to persist even for values of the total
system energy so large that our integration subroutine
was unable to provide accurate trajectory integrations.
These results indicate that Hamiltonian (2) is integrable
for either free-end or fixed-end boundary conditions.

Our investigation of Hamiltonian (3) exposed the ex-
istence of a transition from linear to exponential sepa-
ration of initially close trajectories as the total system
energy is increased. In Fig. 5, we show typical linear
growth of the distance D, given by

N 1/2
p=(51F-pr+(@-) ©

=l
using fixed ends, N=5, and total energy E=1.42, Fig-
ure 6 shows that equipartition does not occur for either
member of the trajectory pair shown in Fig. 5. How-
ever, in Fig. 7, we see that exponential separation be-
tween initially close trajectories does occur for the sys-
tem of Fig. 5 when the total system energy is increased
to E=3.46. Moreover, at this increased energy, one
member of the trajectory-pair shown in Fig. 7 yields
the equipartition of single particle kinetic energy shown
in Fig. 8. Finally, in Fig. 9, we show that exponential
separation also occurs for Hamiltonian (3) using free
ends, N=10, and a total system energy E=20. The
trend toward equipartition is shown in Fig. 10 for one
member of the trajectory pair shown in Fig. 9.

I1l. CONCLUSIONS

Our computer experiments indicate that the Calogero
Hamiltonian (2) is integrable for either free or fixed
ends. The correctness of this computer prediction, at
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least for the free-end case, has been confirmed by a
completely independent, rigorous analysis due to Moser.
On the other hand, the computer experiments indicate
that the Calogero Hamiltonian (3) is nonintegrable and
that it exhibits a stochastic transition for either free

or fixed ends. Clearly these computer results do not
constitute a proof; however, in view of the accuracy of
past computer predictions, the evidence presented here
must be regarded as quite strong indeed.

The Calogero lattice of Hamiltonian (2) thus joins
the equal-mass Toda lattice’ in being an integrable
nonlinear system having both attractive and repulsive
interparticle forces; indeed this Calogero lattice has
long range attractive forces. The Calogero lattice of
Hamiltonian (3), on the other hand, joins the unequal-
mass Toda lattice'! as a nonintegrable system exhibit-
ing a stochastic transition. These two models will likely
prove significant for both mathematics and physics.
The integrable models illuminate new methods for ex-
actly solving nonlinear systems while the stochastic
models provide insights into the nature of thermodyna-
mic irreversibility. In particular, a study of energy
transport in these systems may greatly increase our
understanding of thermal conductivity.
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A stationary Hilbert space scattering theory is derived for N-body systems involving Coubomb-like
potentials. The derivation is based on stationary representations of the a-channel renormalized wave
operators, 9, having the form Q® =s-lim,_,,,, W@, P©@ F©@) where W@, P© are the sta-

tionary operators which form the basis of short-range stationary scattering theory and F‘©,* are appropriate

stationary “renormalization” terms.

I. INTRODUCTION

A general time-dependent potential scattering theory
can be based on the “modified” or “renormalized” a-
channel wave operators, Q2{%’, defined as follows:

Q) = s-lim W () exp[- G (1)) P*?,

t+z e

W' (¢) = exp(¢Ht) exp(—iH 1),

(1.1)

where H denotes the full Hamiltonian, H, the a-channel
Hamiltonian, P‘®’ the projector onto the a-channel sub-
space //‘* and the “renormalization” term G‘*’(¢) is an
appropriate function of the time and center-of-mass mo-
menta of the », fragments making up the channel a. The
renormalized wave operators were first shown to exist
by Dollard! for the case of Coulomb-like scattering with
G®'(f) given by

n
G () =el(f) i M;Myeser

<k lepk—Mkpj‘
20t | MPe — Myp; 12
*lo ( MM, Y M) )
1
e(t):{ ’
_1’

where M, e;, and P, denote respectively the mass,

charge, and center-of-mass momenta of the jth
fragment.

t>0, .2
<0,

For time-dependent theories for which G'*’{(¢) can be
chosen to be zero, i.e., scattering via short-range
potentials, a mathematically rigorous stationary for-
malism can be developed in terms of the following strong?
or weak® Riemann—Stieltjes integral representations for

(a)
Qt

Qi“):s—lim Wiea)P(a) (1‘3)
E=+0
where
200
Wif":if du exp(F )W (u/e)
0
_ E3 H 1.4
_f L (1.4)

-

4+

¥ i€
— H_ =
“J HE; H, - 2\5i’

-
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with Ef“ and Ef denoting the spectral families cor-
responding to H, and H respectively.

When long-range potentials are present, i.e., when
G (t) cannot be chosen to be zero, the stationary repre-
sentations (1.3) are no longer valid. In particular, since
(1.3) leads to the well-known relationship between the
complex energy distorted waves and the physical dis-
torted waves this relationship will not be valid when
long-range forces are present.

Recently, the following stationary representations of
the renormalized wave operators for Coulomb-like scat-
tering have been derived,*

PAaQia)*___S_limPAaFiéx)Wiem)*Ria)’ (15)

E-+0

where R{*’ denote the ranges of @{*’, P,

projects onto functions of the form ¢ =¢, 117, x, g H®
where X;, j=1,...,n,, denote the bound states which
make up the channel « and ¢,, where ¢, denotes the
3n,-dimensional Fourier transform of ¢,, satisfies
XAad)l: <131 where for an arbitrary fixed n> 0,

Aa:{pj, j=1,.. . ,n, |Mjpk—Mkp].| > for each k> j}
(1.6)

and the stationary renormalization term is given by

X M;Mge ;e !
F“"’*:I"(liiz B
* i<e |MPy—~MD;| a.mn
"a
.S MM €,€Ep eM-Mk(M- + AW)Z)
xexp (i 24 ——i—td 1 i L
p( 7o IMp, - M,p,l C2IMPp,~Mp,"°

The stationary representations (1.5) have been used*®
to derive the relationship between the complex energy
distorted waves and off-energy-shell “7T matrix,” and
the corresponding physical distorted waves and on-
energy-shell S matrix for two-body Coulomb-like scat-
tering. This derivation was restricted to two-body scat-
tering due to the explicit occurrence of the ranges R(®
in the stationary representations (1.5).

In this paper we will show that stationary representa-
tions for {*’, similar to (1.5), however without the
ranges R(®, are valid [Theorem (2.1)]. In Sec. Il we
apply these stationary representations to derive a
stationary Hilbert space scattering formalism for gen-
eral N-body Coulomb-like scattering.
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Il. STATIONARY REPRESENTATIONS OF THE
COULOMB-LIKE RENORMALIZED WAVE OPERATORS

The scattering systems considered in this paper will
be assumed to consist of N distinguishable spinless par-
ticles described by the self-adjoint Hamiltonian H of the
form

N
H=H,+V, H,=- E (2m ) vE,
N
V:iE«' V“:(xl‘xi')y (2.1)

x|+ ViR, ~ %),

VipX)=¢éé,

with domain /) (H,) and each V,;, symmetric on 2(V,,,)
D (H,) where m,(e;) denote the mass (charge) of the ith

particle and V:f,’ are short range potentials, i.e.,

Vi@ =0(|x| %), ¢>0, |x| =,

(2.2)
We will further assume that for each channel « the a-

channel Hamiltonian, H,, is self-adjoint on D(H,)

=0(H,). In addition, H, will be assumed to have the

decomposition

H, = He» -+ Hyt (2.3)

where H%'® depends only on the center-of-mass momen-
tum variables of the fragments making up the channel
a and Hi" depends only on the internal coordinates of
the a-channel fragments and has a pure point spectrum

on M@,

The above general requirements will be implicitly
assumed hereafter.

In the following we will denote by J‘®’ the set of func-
tions, dense in H@ , having the form ¢ =¢, n;.'g, X,
e/‘® where x;, j=1, .. .,n,, denote the bound state
wave functions making up the channel o and ¢,
< L3(R3") is such that

& M,Myee -1
i) —dTREGER 7 2(Rn
F(liliZ:;z ]ijk"MijI) ¢, € LA(Re).

Theorem (2.1): Assume that the renormalized wave
operators, Q{*’, for Coulomb-like scattering exist.
Then Qi"” have the following stationary representations

QY p=s-lim W F{&*y (2.4)

§=40

valid for each  €0'*" with W{** and F(®’ given by
(1.4) and (1.7) respectively.

Proof: We use the Bochner integral representations
of W'® given by (1.4) to write for /),

W(;)F‘ieol)* d)
=1 f*m du exp(F u + iHu/e) exp(—iH u/e)FE* y,
0

Using the explicit form of F{®'™* given by (1.6) allows
us to rewrite the above as follows

WEOFE ™y

£ 13
= f du exp(F u + iHu/e) exp{ - iH u/e — iG'* (u/e)]
0

Z"‘; M;Mzejen

X ex . :
p<ilj<k [ MV, - MYV, | 10giu‘|>
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ny 1
xF(l:tiE————L—-Mije e ) P

(2.5)
jee 1MV, =MV,

where G'® is given by (1.2). By the Lebesgue dominated
convergence theorem for Bochner integrals (Ref. 6,
Theorem 3.7.9) the strong limit ¢ =~ + 0 of (2. 5) can be
taken under the integral for each ye /) to obtain

s-lim W F{®)*

€= +om

2o na
. M. Mre;ey
:Q‘“’(il)f duexp(?uilz—"-——‘——
* 0 i< lMJ'Vk-MkaI

n

X M;Myeye -t
. Ry k I — {a)
xlog[u‘) r<1il,-2<k_—l_—iMij—MkV,-|) v=0*y,

which proves (2. 4).

The above proof of the stationary representations
(2. 4) depends explicitly on the logarithmic dependence
on | {| of the renormalization term G‘®’(#). In the case
of two-body scattering via potentials satisfying V(x)
=0(1x17), 3<¥<1as |X| ~=, the time-dependent re-
normalization term’ leads (via a similar argument as
given in Ref. 4 to obtain F‘;’) to the following stationary
renormalization terms,

[(:te)fm dtexp (:Fei;t IL(V_)_AL tm) ] -
0 (1 -vp'

where ¢(¥) is a real constant, M denotes the reduced
mass, and p =1pl, where p is the relative momenta.
We note that the techniques used to prove (1.5) and (2. 4)
are not immediately applicable since the stationary re-
normalization terms (2. 6) are infinite in the limit ¢
—-+0,

(2.6)

I1l. STATIONARY HILBERT SPACE FORMALISM

In this section, we derive a stationary Hilbert space
formalism for N-body Coulomb-like scattering from the
stationary representations (2. 4) for the renormalized
wave operators.

It follows from the Riemann—Stieltjes integral repre-
sentations (1.4) that the following equalities are valid
for each ¢ > 0 and each ye/)‘®,

- 3.1)
- a__Fie ok
- || astg e

Furthermore, for ye/‘® where /‘® is defined as

follows,
5 & M;Mye,e -1
pHter = <)t 1-'(1 10y ——iiTREGOR c
ve | 1 TV, — 11, veD(H,)p,
we can apply Lemma 5 of Ref. 2 to rewrite the first
equality in (3.1) as follows for each ¢> 0,

WFE*y

+00 1
:I:(at)* _f —_
Y H-)tie

x V(a)dthaF(;)*z’b’ (3‘2)
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where V'®=H_H_.

The equalities (3.1) and (3. 2) together with (2. 4)
allow us to state the following theorem which provides
solution integral equations in Hilbert space for the
Coulomb-like renormalized wave operators.

Theorem (3.1): Assume that the stationary represen-
tations (2. 4) for the Coulomb-like renormalized wave
operators are valid. Then for each ¢ =/ we have

+00

(@) . + if
2.5 ¢=s-lim | H-Xtie dEyaF@*y
; (3.3)
. ¥ ie
—g-lim EH_—__F(a)* )
ST ) BRE, Sae eV

Furthermore, the following solution integral equations
are valid,

. s
(€ NN o)k ol e
2,*¢Y=s-lim {Fte i j:w Toniie

€-+0

x Vg Ela F &y } for each y ). (3.4)

In order to derive stationary Riemann—=Stieltjes in-
tegral representations for the S operator, we will re-
quire the following lemma.

Lemma (3.2): Assume that the Coulomb-like re-
normalized wave operators exist. Then for all channels
a and § we have

Lm (F&*¢ | w*l*y) =0 (3.5)
€=40

for all D ® yet'* and
w-lim Q&* Wi Fle* =0 (3.6)

€=+0

for pe®,

Proof: From the integral representation (1, 4) for
W!®* we have for ¢ c/® and peH'¥,

<F4(-2)* ¢ l W(.S)*Qf.a)@
=~ [ du exp(u) (FP* ¢ | expliHgu/c) exp(— iHu/e)2LY).

We now note that due to the existence of the renormal-
ized wave operators the following equality is valid,

lim {(F&* ¢ | wo* QL)) + jo'w du explu)

X (F&*¢ |exp(iHgu/e) expl~ iH u/e = iG* (u/e) )} =0.

Thus from the above equality, (3.5) will be valid if for
each ¢ =D® and yeH‘* we have

lim (= 1) j(;-m du exp(u)

x (F®*¢| expl-i(H, -~ Hu/e =iG /)P =0. (3.7)

We first note that if @ and S8 are two channels which
have in common a complex fragment whose bound state
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wavefunctions correspond to different energy eigen-
values, then (3.7) is immediately valid due to the orthog-
onality of the bound state wavefunctions.

In order to prove (3.7) and hence (3.5) for general
channels « and 8 we can apply the Lebesgue dominated
convergence theorem to see that (3. 7) will be valid if
the limit ¢ — + 0 of the following expression is zero,

(FiP* o expl—i(H, - Hu/e = iG* (u/e)]w), (3.8)

for all ¢ contained in a dense subset of /)% and all ¢
contained in a dense subset of #/*’,

In the case o=, we can transform expression (3. 8)
to the momentum representation and choose as the dense
set of functions ¢ = ¢, 1y x,, where ¢, is a Schwartz
function with supp¢, C A, where A is defined by (1.6)
with 7=0. By an appropriate integration by parts the
limit e =+ 0 of (3. 8) can be shown to be zero and thus
(3.5) is valid for the case a=8.

We finally consider the case a# 8 with « and g dif-
ferent arrangement channels, Thus we have, H, - H,
=Y, Y, ki +v,, where the k,, i=1,...,N, denote the
momentum variables of the N particles and at least one
of the constants v,, /=0, .. .,N, say 7,, is nonzero.
The functions ¢ and ) in (3, 8) will be chosen from «'®’
and «‘® respectively, where x consists of functions
%k, . ..,ky), where ¥ denotes the 3N-dimensional
Fourier transform of x, with ¥ a Schwartz function which
is zero in a neighborhood of M, 3, Ci¥k, - M, 3, C'k,
=0, for each j<k, j,k=1,...,n, where p,=3,C{Vk,,
and in addition ¥ is zero in a neighborhood of k, =0.
Thus, by an appropriate integration by parts in the first
component k,, of k;, the limit ¢ =+ 0 of (3. 8) is zero,
which concludes the proof of (3.5).

The proof of the relation (3. 6) is analogous to the
proof of (3.5) given above and thus will be omitted.

The S operator S ;, corresponding to an incoming
channel! o and outgoing channel 3, is defined in terms
of the renormalized wave operators as follows:

Sy = (1/2m)QP* Qo) (3.9)

We will now apply Lemma (3. 2) to derive stationary
representations of S_,.

Theovem (3.3): Assume that the renormalized wave
operators for Coulomb-like scattering exist. Then S,
has the following strong Riemann—Stieltjes integral
representations:

(@ ]S4t

= - (1/m) lim(F&* |

€-++0

X [w dlEfBV(B>Q£a)mw> ) (3.10)
valid for ¢ €D‘® and y<#‘* and
Segh= - (1/7) w-lim 3 m
XQEB’*V“"’d,LEfaF‘_‘“*w, (3.11)
where d)eD-‘“’.
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Proof: It follows from (2. 4) that
(| QE* ) =1lim (FE™* ¢ | WH* y) (3.12)
€= 0
for ¢ c0® and yc/#, where W!#* are given by the
following strong Riemann—Stieltjes integrals:

W(én*:f 4, Els _Fr (3.13)

H -~ \Fie

Thus from (3,12) and (3.5) we have for ¢ €/® and
d)EH(a)s

(¢ |Sqapth = (1/2m) lim (FE* ¢ [ {WiP* — wB* Q0 y).
€~

Inserting the explicit Riemann—Stieltjes integral rep-
resentations (3.13) for W!¥* and using the interwining
properties {cf. Theorem (4.1) Ref. 8] yields

(&S4s8)
=—(1/mlim <F*.f’*¢>l

€-~+0

xf dy EL 8(H - )2

0

(3.14)

€
(Ha - K)Z + E2 lp M
In order to complete the proof of (3.10) we must show

+o e
I d, E\"s(H - Q! @ oopra?

o0 1

(3.15)

+00

- wote) €
- L HEVOR e
for all y</#/'®. We first note that if the above equality
is valid for finite intervals of integration then it is
valid for infinite intervals of integration. Thus, for an
arbitrary subdivision 7, ={a=x, << =b}of (a,b)
with |7 | =sup, X, — A, and M, e (A, ,,) we consider

n
Z BV~ BB {H =) - VO Sy 4 ]
l\ 2
zf: (Ef:—E{’f_l)(HB—A;)Qf“’mw :
n 2
< Im ) Z Ep - B )0 ey | -

Since the last expression above converges to zero as
fw,| = +0, the equality (3.15) is valid.

In order to prove representation (3.11) we use (2.4)
together with (3.6), which yields

Sagt=(1/278) w-lim QP {W'®) — Wi }Fe*y

€-+0
for all </ *’, 1t is easy to see by an analogous argu-
ment as given for (3. 10) together with Lemma 5 of Ref.
2, that (3.11) follows from the above equality.

The stationary representation (3.10) relates V@ Q(®
to the scattering operator S,;. We will now derive the
relation between the operators V&’ W(), ¢,>0, and S,,.
In the case of short range potential scattering this rela-
tionship has been derived and is provided by Lemma 4
of Ref. 2 and Theorem 2 of Ref. 9. The proof of the
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following Lemma (3. 4) and Theorem (3.5) is a general-
ization of the proof of Theorem 1 of Ref. 9 and Lemma
4 of Ref. 2 respectively, which takes into account the
stationary renormalization term F{®*,

Lemma (3.4): Assume that the stationary representa-
tions (2. 4) of the Coulomb-like renormalized wave
operators are valid, Then for each ¢>0, W.*' F{** map
peDf® into J(H). Furthermore, there exists nonnega-
tive constants «, B, 7, 0 and w such that for each
e 0'® we have

[V @e - W Fe )| < aflv] + 8] Hu

] ) -1
+ vy Har'(l—iz M) P

7 MY, - MY,

S M, Me,es -1
+(5+Ew)”r(1-12-——4—u——> w” (3.16)
i<k | MV = MV, |

In addition, the following equality is valid;
s-lim V®(Q!* - w @ Fl*)y=0,

E=++0

(3.17)

for each zpeD-“”.

Pyoof: It has been shown in Theorem 1 of Ref, 9 that
W) maps 0 (H,) into J(H). Since F**pc(H ) for each
y€D @ we have W' ¥ F{@*yc )(H) for each ¢> 0.

As a consequence of Lemma 1 of Ref. 2 there exists
nonnegative constants @ and b such that the following
bound is valid,

|| exp(iHu/e)H exp(— iH yu/e) F&* |

"i M; Mreje -t
, {10, —IMkEIER
| ( ik IM,V, - MV, 4

ﬂa 1
r(l-iE __MMeer ) ¥

jeu | MV, = MV, |
for each /)@ . Thus, the following Bochner integrals
exist and the following equality is satisfied,

(WS FO* - Wi F=H )y

<

+b

—_ - f'm dteXp(u+ zHu/e)(H -Ha)exp(_ iHau/E) F-(ezx)*d)
(o]

for each /)¢, Integrating the above Bochner integral
by parts, which can be justified via Lemma 2 of Ref. 2,
yields the following equality:

(HW® Flar _ wie) plaxy Yy
=ge(W QI Fler* - Floxyy, (3.18)
valid for each ¢> 0 and each yc/ @,
We now consider for y /@,
V(B)(qu) - W::‘)ng)*)w
=C(O(E - HNQL ~ WP F* ),

where C(¢)=(H - Hy) (£ - H)™', Im{> 0. Since, by Lemma
2 of Ref. 9, C({) is bounded, there exists a constant B
> 0 independent of ¢ such that
” V(B)(Q(a) - W(g)lﬂa)*)w”
<B|(5 - - W FO* ). (3.19)

Furthermore, by the intertwining properties
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(¢ _H)(Q(_a) _ Wfé”Ff?)*)d): (Qiu) — W_(_:‘)FE:)*)
X(§ = H )P+ (HW O Fle* - WO FlO*y )y, (3.20)

From (3.19), (3.20), {3.18) and the explicit forms of
W and F@* we obtain

" V(B)(Q(_a) - W:)F:I)*)d)“

<B {H (@ - W F@*) (£ -H Y|

n

r (1 _i Yy MMese,

1
+2
‘ P IM,vk-Mkv,1> v

}, (3.21)

valid for each /) and each ¢ > 0. Relations (3.16)
and (3.17) follow immediately from (3.21).

Theovem (3.5): Assume that the Coulomb-like renor-
malized wave operators exist. Then the following
stationary representation of S, is valid:

($]Septh=lim lim (- 1/n)<ﬁ§;*¢|

€)=+0 €,+ 40

>(3.22)

-~ s V(B i) plak €1
xf_ defV W~62F_52 (Ha—K)E‘F_ef P

for all ¢ cH'® and weD-“"’.

Proof: We have from Theorem (3.3)

(o] Sqﬂd;}:elir?o (1/2m4) <Fi§;*¢ | f d,Ey sVl
) e

1 1
X T - N ) ¢>9
Hy, —Atie, H,—\-—ie

for all ¢ <D® and pc#‘*’. Thus, in order to prove
(3.22) we are required to show that the strong limit e,
— + 0 of the following expression is zero,

J‘ d, EfBV(B){QEQ) _ W-(-ZZ)F'(:;*}

)

1 1
- 3.23
X{Ha—x+iel Ha—x—iel}w (3.23)

for each ¢, > 0 and all pe @,
We first note that

o 71
[ d, E}:EV(B){Qf"” _ Wfa;F(_ea;* (1)

B, - X%,
Foo
= (1) J' dt explt et — iH,)VD
0

x{Qle) _ wjg; Fj,g;*}exp(mat)w (3.24)

is valid for each p=/® and all ¢, > 0, ¢,> 0. In order
to show the above equality we rewrite the resolvent con-
tained in the above Riemann—Stieltjes integral in terms
of Bochner integrals over ¢, which yields

1)
H, — \¥ig,

— (:i: l)f dx EfBV(B){Qia) _ Wﬁ;xz)l.‘ia;)*}

¢

-62 -Ez

Imd E:Iﬂv(ﬂ){ﬂ(a) — W) plarx
'y -

o

xf“ dtexpl(se, —in+ iH ). (3. 25)
0

By the inequalities (3.16), the following Bochner in-
tegrals exist for ye)®:
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f:” dt exp[(+ e, — iNE]V®
QL — Wi F2*exp(iH Y.

Thus we can rewrite the last expression in (3.25) as
follows:

(:ti)f::dthﬂf:mdtexp[(:tel -]

X V(B){Q_(a) _ W("‘)F“")*}eXp(iHat)w.

=€2 " -fp
Applying Theorem 3’ of Ref. 2 together with the in~
equalities (3.16) allows us to interchange the above A
and ¢ integrals which verifies (3, 24).

The relations (3.24) allow us to rewrite (3.23) as
follows:

(=) [[7 dtexp(~e,t - iHH VOl - Wi Rl
X exp(iH D)0+ (+14) [ dtexp(+e,t — iH )V
0

x{Qfe) o W‘_;"Z)F“”*}exp(iHat)gb.

-52

(3.26)

That the strong limit ¢, ~+ 0 of the above expression is
zero, follows by an application of the Lebesgue domi-
nated convergence theorem for Bochner integrals,
whose hypothesis can be verified from the inequalities
(3.16), together with the relation (3.17). Thus the
stationary representation (3.22) is valid.

IV. DISCUSSION

In this paper we have derived a natural generalization
of the short range stationary scattering theory which is
valid for general Coulomb-like potentials. In particular,
we have shown that all the essential results contained
in Refs. 2 and 3 for short range scattering have a gen-
eralization to scattering via Coulomb-like potentials.

It is easy to see in a heuristic manner that the station-
ary scattering formalism of Sec. II leads to the rela-
tionship between the complex energy distorted waves and
off-energy-shell “7T matrices” and the corresponding
physical distorted waves and on-energy-shell S matrix
for N-body Coulomb-like scattering. We hope to provide
a concrete derivation of this relationship in a future
publication,
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A class of field theories is considered where the codomain of the field is taken to be a compact Hausdorff

topological group G. The product space G*®" is then a compact Hausdorff topological group G*

such there exists a unique measure on this space.

1. INTRODUCTION

The quantum nonrelativistic mechanics of a point
particle in » dimensional Euclidian space R” can be set
in the framework of the Hilbert space L%R", C), the
equivalance classes of Lebesque square integrable func-
tions on R". It would be natural to try and formulate
quantumn field theory in a similar setting, but infinite-
dimensional integrals are difficult to define. The defini-
tion is usually made by taking the limit of finite-dimen-
sional integrations as in Wiener integration or as in the
following brief argument due to Rosen.?!

Consider a linear xn-tuble field with topology given by
the norm

Ja=v1 = s 630 ~ w00 utx) - v}

In this topology the finite-dimensional linear normed
subspaces are locally compact Abelian topological
groups, and as such for each finite-dimensional sub-
space there exists an invariant Haar measure. The
measure on the whole space is then defined as the limit
m — « of the measures on the m-dimensional subspaces.

In recent years interest has been aroused in nonlinear
field theories and in particular field theories in which
the range of the field is taken to be a Lie group
(Dowker?). It is shown below that when any compact
topological group is used for the codomain of the field,
there is a unique well-defined integration, without the
problem of a limit over finite-dimensional subspaces,
and an associated L® space. Path integrals are also
well defined in this class of field theories, and so could
be a perfect setting for the Feynman approach to quan-
tum field theory.

1l. THE FUNCTION SPACE

In what is to follow the field will be defined to be the
space of functions

f:R"—~ G.

In usual theories G is taken to be a linear vector space
R™ or €™, but in the theories considered here G will be
taken to be a compact topological group. The function
space will be denoted G®". (It is to be noted that some
authors use this notation to mean only continuous func-
tions, but here it will be used to denote all functions. )

As a general reference for point set topology,
Dugundji® is recommended, but some definitions are
important in the following arguments and will be stated
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and as

for completeness. A topological group relates its
algebraic and topological structure in the following way:

Definition 1: G is a topological group if G is an
algebraic group and the function

P:GXG— G givenby P(g,, g,)=2,5"

is continuous. (Here juxtaposition denotes group multi-
plication). An algebraic group structure can be defined
point-wise in the space G®" as follows. Given any f,, fa,
there exists f; defined by fo(x) = £,(X) 7,(x). A topology
may be defined on G*" , which makes it a topological
group. The point topology is the smallest topology such
that the evaluation functions E,(f) =f(X) are continuous.
This topology can be built up from basic open sets of the
form I, =g~ O,, where O, is open in G and O, =G for all
but a finite number of values of R". Since the mapping
has continuous coordinates with this topology, G?" is a
topological group. The group G is endowed with two
other properties namely:

Definition 2: A topological space (G, T) is said to be
Hausdorff if given any two points g,, g, € G there exists
two elements of the topology 7,, 7,< T such that
8.€T, £2,€T,and 7, N T,=¢.

Definition 3: A topological space is said to be compact
if given any open covering there exists a finite sub-
covering. With the point topology GR” inherits these two
properties from G.

Theovem 1: If G is Hausdorff, G®" is Hausdorff.
Theovem 2: If G is compact, G*" is compact.

These two theorems are proved in Dugundji; note that
the proof of the last theorem depends on the axiom of
choice.

I1l. MEASURE AND THE HILBERT SPACE

The nice feature of compact topological groups is that
there exists a unique finite measure. The proof of this
is given in Dunford and Schwarz.* (Note that in Dunford
and Schwarz topological groups are by definition
Hausdorff. )

Theorem 3: Given any compact Hausdorff topological
group G there exists a unique nonnegative countably
additive regular measure p, the Haar measure, defined
on the Borel sets 8 of G such that u(G)=1 and u(gE)
= u(E) for each g€ G, E € B8, and furthermore

W(E f} = w(E™) = u(E).
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Since G?" inherits the properties of being Hausdorff and
compact from G, it also inherits the property of the
existence of a unique measure. This can be seen more
clearly as follows: A basic open set in G*" may be pre-
scribed by I17,, O, for a finite number of points X, in
R", where O, is str1ct1y contained in G*", the pomts

of R" for wh1ch 0, =G are suppressed. A set function p
from these basic open sets into the positive reals may
be defined as follows:

p(i[=11 Ox>: iI=11 V(O"i)’ (3'1)

where v is the Haar measure in G. The function p may
be extended to an outer measure and can be shown to
satisfy the properties of Theorem 3 and since the Haar
measure u is unique, it must coincide with the exten-
sion of p.

The equxvalence classes of square integrable functions
L*GR", B*", 11, €), abbreviated LAG®" ), form a Hilbert
space (Dunford and Schwarz) and so a framework for
quantum mechanics is present in this field theory. An
additional feature of the use of compact topological
groups is contained in the following theorem (Dunford
and Schwarz).

Theovem 4: Let {R*} be a maximal set of unitary
finite dimensional representations of G* (a ¢ 4 some
index set) no two of which are equivalent. Let {R }be
the corresponding family of matrix elements, Then
{R% }1s a complete set of orthogonal functions in

2(GR ).

IV. CONTINUOUS FUNCTION SPACES AND
BOUNDARY CONDITIONS

Interest is not always in G®', but in some subset of
it, in particular C(R", G), the space of continuous func-
tions, or C(R",G, «,e), the space of continuous func-
tions, such that, as |X| — «, f{X)— e the identity ele-
ment of G. This space will be abbreviated C(R", G). The
latter space is of interest in kink theory (Williams®),
where because of the boundary conditions the space
divides naturally into homotopy classes which for suit-
able choice of G, for example SU(2), correspond to
half-integral spin conserved particle structures. In this
case it is the class of trivial maps I(e) of C(R", G)
which is of particular interest. [The class II{e) is the
subset of maps of C,(R", G) which can be continuously
deformed into the identity. ]

It can be seen that C(R", G), C,(R",G), and Il(e) are
algebraic subgroups of GR", and, because every basic
open set will contain one element of each, they are all
dense in GR", since R" is Hausdorff. The following
theorem (Halmos®) shows that none of these subsets
contain measurable sets in G*".

Theorem 5: Every Borel set A of finite positive mea-
sure in a locally compact group G has the property that
AA™" contains an open neighborhood of the identity.

The reason for this is as follows: The Borel sets %" of
GF" are the class of subsets of the form B®, where E
is a countable subset of R". Thus BR" contains no set in
which a noncountable set of coordinates is restricted
(Kingman’). This means that C(R", G), C,(R",G), and
M{e) are thick subsets of GR” (Halmos®), The following
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theorem (Kingman’) shows how these three subspaces
may be made into measure spaces.

Theorem 6: If ' is a thick subset of a finite measure
space 2,8, u; /'=9'N Band p'(FN B) = u(F) for any
Fe Bthen @', 8, 1", is a measure space.

This may be seen alternatively as follows. A measure
can be defined on C(R", G) [and similarly on C,(R", G)
and l'I(e)] in the followmg way. With the topology induced
by G*" the basic open sets of C(R",G) are
C(R",G)NT1,0,. 1t is clear that if

C(R", G)NTI0,=C(R", G)N 110y,
then x=x', O,= Oy
open sets defined by

p'(C(R™, G)NTI0) =T(0,),

where vis the measure in G, is unambiguous. This can
be extended to an outer measure and then reduced to a
measure on the measurable sets.

so that the set function on the basic

V. TIME DEVELOPMENT AND PATH INTEGRATION

In the Feynman formulation of nonrelativistic quantum
mechanics the time development of a system is pre-
scribed by a propagator which can be derived from a
“sum” over all possible histories of a system G. (The
following arguments will be restricted to a system G
but apply equally well to G®".) The space of all possible
dynamics C([t,¢'],G), [t,/'|CR, satisfies the same prop-
erties as C(R", G) above. That is, C([{,¢'], G) is a thick
subset of a compact Hausdorff topological group G'*+¢",

The Feynman “sum” is an integration over the sub-
space C({t,t'],G)N 0, x0;.; here 0, is an open ne1ghbor-
hood of g€ G and Oy an open nelghborhood of g’ G.

This subspace can be assigned a measure of total weight
unity defined by [»(0,) - ¥(0/}]'1’, where p’is the
measure in C({f,/’'], G) and v the measure in G. The
Feynman propagator from an open set O;. to an open

set O, is given by

K(0,,0;) =[v(0,) (5.1)

.u(o;')]fotxo
where S is the action function
S:c(t,t),G)~R

If the limit v(0,), v(O;)— 0 of (5.1) is well defined, this
will be the usual Feynman propagator

l(ién) X(O,,O;.):K(g,g’;t,t’).
viOy

-0

. du exp[iS(1)],
t

V(O't,)
If the action is independent of translations,
S(gH=SHVY gcG,
because the measure is also translationally invariant,
K(g,g';t,t')=K(g(g' )", e; ¢, 0).

This corresponds to the usual translational invariance
of point particle mechanics.

VI. CONCLUSION

The class of field theories investigated here do give
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the possibility of a useful well-defined functional
integration without the problem of limit of finite-dimen-
sional integrations. The existence of a finite measure
stems from the compact Hausdorff nature of G and the
uniqueness from the group property of G.

The measure u is by construction invariant under the
group action of G®”, but it can also be seen to be in-
variant under another set of transformations. Let T be
any combination of rotations and translations in R”,
Tx=x'. The action of 7 on fe G?” may be defined

TF(x)=f(T7'x).
The action of T on the basic open sets is then

Tno, =fio

-1 —_— % —
00, =110y, where T7'X, =X;, Oy, =0y,

That is T transforms the basic open sets into basic open

sets. From the definition of measure on the basic open
sets it can easily be seen that

(o) oo
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so that the measure is invariant under this transforma-
tion. In fact T can be any transformation R"— R", that
is, a one-to-one and onto function.
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The Dirac equation for a charged spin 1/2 particle with an anomalous magnetic moment in the Coulomb
field is solved. A new phenomenon of formation of very narrow resonances of very high mass at small

distances is demonstrated.

I. INTRODUCTION

We solve in this paper the Dirac equation with the
Coulomb potential plus the additional interaction due to
the anomalous magnetic moment of the electron in the
Coulomb field. To our knowledge, this problem has not
been solved before. Aside from this, the result shows a
remarkable new phenomenon of resonance formation at
short distances which is the real motivation of present-
ing this investigation. The anomalous magnetic mo-
ment of the electron is small relative to the normal
magnetic moment (which is taken care of by the Dirac
equation), but is of the same order of magnitude as the
whole magnetic moment of the proton. We show that the
magnetic interactions play the dominant role at small
distances.

1l. THE WAVE EQUATION

We consider a relativistic spin 3 particle of charge
e, possessing an anomalous magnetic moment a (in
units of e,%i/2mc) in the Coulomb field of a fixed center.
The normal magnetic moment is already taken into ac-
count by the Dirac equation. The equation we study is
thus

#lp, = (ey/ A, ] =m ct ¥ 1
= ~alé®ni/dmcP Wy F, ¥,
Here A, and F,, refer to the Coulomb field of the fixed
source e, at the origin. Thus
A, =(ey/7), 9). @)

Passing to the Dirac o, B matrices and evaluating the
right-hand side of (1) with the help of (2), we obtain

[cd-p—(E—glf—z>+Bm,cz:|\If
2, el 1
=-agE iBeY,

®3)

where o _=a-r/7. Note that we have put the reduced
mass m, in the Dirac equation, but the anomalous mag-
netic moment is measured in units of efi/2mc, m

= mass of the particle. We shall consider both cases
e,e;=a and e,e,=— o, corresponding to two leptons or
lepton—antilepton systems, respectively.

111. SEPARATION OF ANGULAR COORDINATES
AND THE REDUCED RADIAL EQUATION

We study now Eq. (3). Having exhibited all the mag-
nitudes, we shall take from nowon’i=c=1.
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Using the relation
a-p=ap +ile /r)o-L, la,,p,]1=0, (4)
we rewrite (3) as

N e, 1.
[arpr+z;10°L+a—21;;f 7’,2‘1/301,

(5)

+3mr_(E_9Lf—?~>]\1/:o.

We see from (5) immediately that
J, J,, and K=B(E-L+1) (6)

are still constants of the motion as in the ordinary
Coulomb problem, because 0+ L=8K~1. We therefore
look for simultaneous eigenfunctions of the Hamiltonian
and J2, J,, K, which we label by v, with

K\If']‘.].z ==Ky, . M

It follows from (7) that the four-component equation can
be split into two coupled two-component equations by
putting

w5, = (‘f: ) , ®)

such that ¢ and ¥ are eigenfunctions of (0-L +1):
(o L+1)p=-kp, (0°L+1)x=xx. ©)
Because on angular momentum states |l) we have

(O L+Dji=j+H=-(G+H|I=j+2), (10)

(O L+1)[1=j-2)=(i+3)|1=]j- 5.

we can separate the angular and radial parts of ¢ and
x by writing

o=glr)|1=7+3), (11)
x=iflr)|1=7-3%).

Inserting these into (8) and (7), we find

KU, = (j+2)¥; (12)
hence
K=j+%. (13a)

If we consider the other possibility, where ¢ and X
are interchanged in (8}, we get the same equation as
(12) with x=— (j+3). Therefore,

k==x(j+3). (13b)
Returning now to our Eq. (5), we note that
Copyright © 1976 American Institute of Physics 506



0o, g0
ar UO plogr

and

(14)

Consequently, the angular parts separate, and we ob-
tain the following two coupled equations for the radial
parts,

af (k-1
@ ( PRl )f(")‘
+ mT—E+€;—ea g,
( ” ) (16)
dg_ (x+l_ ee
ar <— ¥ “ﬁﬁ)g(’)
+(mr+E—-g‘l'§a>f(7’)
or, letting
g@)= /), (), )=/ 7)), (17)
du. K €183
E'g I(; * a2m72>u2
+<mr—E+g’£a)ul,
4 (18)
du
T == (f rogis )

+(mr+E——'1%z)u2,

One can try to solve these coupled first order equations
as a matrix equation, or, as we shall do, decouple
them by going to a second order equation. We first in-
troduce a dimensionless variable x by letting

YEaryx, vo=0/m, (19)
and

e=sgnle,e,). (20)
Then

%Zf‘ = (f— + 2—25) ty + B )u,,

d

== (5 )t AW, (21)

O<x<sw,

where

Ax)=arylm, +E) ~ea/x, (22)

B(x)=ar,(m, — E) +ea/x.

Differentiating the second of Eqs. (21), and using the
first, we obtain

du, [k € (K € \du
dx* _(xz +x3> " \x +sz> dx
+ A’ +AW| (X +
(0, + A0 (% +55) o + BN
Here we insert for u, its value obtained from (21)
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10, K | €
i (5 75) ]

and obtain an equation in u, only:

(d2 A’du) ke +1) ele+1) 1
dx® dx ¥ % 45t

(23)
AI
+=(= + =
(x 29(2) AB] u, =0.
The first order derivative term du,/dx can be elimi-
nated by the transformation
Uy :m"’h (24)
Then
dy 14 7%
dx = 2 E d) ‘Pu
du, _1A"VA ~ ~A’A’/\/'—
dx* 2 A !
A dy &Py
+= =L VA 2L
VA dx dx*

We insert these expressions into (23), observing from
(22) that

AB=w P+ 2 ar,0 E/x — 0%/ x,,

where
= — @ri(m?® - E?) (25)
and evaluate and insert A’, A” as well, and obtain
finally after some algebra the eigenvalue equation
4
(;i_z+k —Vl(ﬁc))wl:O, (26)
where the energy-dependent dynamical “potential”
V,{x) is given by
V,(x)= 5(—’(———) + 2ear,a El
x? X
1 [e (k+1) |3 1 ]
= += = - a? 27
2w 1R @7
1 1 1
= 4+ =
+ v3[€(K+ ) 2 hl(x)] 47
with
07 +E
h(x)= —e+— LRy
2 m

In the transformation (24) leading to (27) we assumed
Afx) >0 which is fulfilled for e=—1. Fore=+1 there
is, however, a region with A(x) <0 and in this case one
has to transform according to

ulzv—Ail)l

which leads exactly to the same equation (27),

(24”)

In a similar fashion,
equations (18) and set

if we eliminate #, from the two

MZZVBijz, (28)
we obtain
&
<de + k2 —V(x)>7,l)2_0 (29)
where
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vir)

Resonance
region

Positronium  r —
region

FIG. 1. The effective dynamical “potential” for x=j+4=1.
The positronium levels are indicated schematically at Bohr
radius and the resonance levels at ¥ ~afa/m), Vyay ~ (35 GeV)2,

Vz(x)="("x;1) + % ar,aE >
1f ek=1) 3 1 ]
xz[ hz(x) +4 hg(x)"az (30)
1 1 1 1
+x—3[6(“'1)'§h2(v)]+@?’
with
E-m

hy(x)= —¢ + o= Z My
27

IV. STUDY OF THE EIGENVALUE EQUATION
AND SUPERPOSITRONIUM RESONANCES

The dynamical potentials V,(x), Egs. (27) and (30),
are rather complicated, but for E/m > 1 they become
essentially independent of E. For a fixed value of «
=1,e==1,1.e., e,=—e,, V,{x) has the behavior
shown schematically in Fig. 1.

We see from Fig. 1 that the new terms of the inter-
action proportional to the anomalous magnetic moment
a=c¢/27 only very slightly change the potential in the
positronium region, and these changes are taken into
account in quantum electrodynamics. However, at dis-
tances of the order of aa/m the structure of the poten-
tial is entirely changed, and we obtain a new region,
which we call the superpositronium resonance region.
Clearly the spectrum of the Hamiltonian is continuous
for ¥* >0, and we can only locate the position of the
resonances. For this purpose we first truncate the po-
tential along the dotted line so that we have a potential
well. Let

V)=V -V, (). (31)

There are exact upper and lower bounds for the number
of bound states’ in such a potential V(x):

77ngmj‘7(¥),”2dx,
T Ja
s ’;_-1[*0, V()
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(32)

where {{ -* -}} indicates the integral part of the quantity
inside the parentheses.

By numerical integration we find
{o.9}lsn<1.2, for k=+1. (33)

We thus expect one resonance for each fixed value of
k. For the truncated potential we have indeed located
the position of the bound state by numerical integration.
The actual location of the resonances will be done by a
numerical phase-shift analysis and will be reported
elsewhere.

V. DISCUSSION AND CONSEQUENCES

(1) There are no new parameters in the present cal-
culation, the value of the anomalous magnetic moment
being fixed as a=a/27 from the lowest radiative
corrections.

(2) Fore=+1, i.e., e, =e,, the Coulomb interaction
is repulsive and bound states in the positronium region
no longer exist. In the superpositronium resonance re-
gion there is, however, an approximate symmetry of
the “potential,” and the change of sign in ¢ can be com-
pensated by a change in the quantum number x. This can
be seen as follows. Under the assumption E/m > 1 we
have 1/h,<<1. Since the Coulomb interaction 2car,@ E/x
is also negligible at distances x < ao/m, the relevant
potential is approximately given from (27) by

VvV (x)~'_<£"_t1—) +M ..)_._1_

X X 4x*"
Comparing (27) and (30), we see that V,(x) goes over
into V,(x) under the replacement

e~ —¢ and K—~ —K.

We therefore expect similar resonances in the lepton—
lepton system if they have high masses. However, the
potential for e =1 can be quite different if E is small as
seen from Eq. (27).

(3) In order to ascertain that the new resonances are
indeed realistic, for example, for the ¢'¢” system,
many further effects have to be considered.? These in-
clude the magnetic moment of the other particle, re-
coil effects, and other higher order radiative correc-
tions. Unfortunately, there is no close relativistic
theory of a two~body bound state even for a pure
Coulomb interaction. These effects have to be con-
sidered step by step, and some are being investigated.
But in view of the recent discovery of very narrow
high mass resonances in the ¢*¢” system a dynamical
model such as the present one obviously opens up re-~
markable new possibilities and further directions of
research.
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Comultiplicator of finite magnetic groups
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A matrix algebraic method for constructing the comultiplicator group for any finite magnetic group is
given. Each element of this comultiplicator group corresponds to an inequivalent factor system of the

magnetic group.

1. INTRODUCTION

Projective representations®? of groups belonging to
a factor system are useful for representations of non-
symmorphic space groups®* and other problems of
physics.® For magnetic groups which contain the anti-
linear time reversal operator® either singly or in con-
junction with space rotations (proper or improper) and
translations, the corresponding theory of projective
corepresentations belonging to a factor system are
used, %78

Schur®-1% showed that for a group G of linear opera-
tors the nonassociated factor systems can be obtained
from the multiplicator group K. The multiplicator group
is defined like this. For every group G there exists a
smallest extension é, such that the factor group G/K=G,
where the multiplicator group K C C(é), the center of
6. Schur also gave the algebraic method of constructing
K.

Janssen® has extended Schur’s results to magnetic
groups. The multiplicator group K(M, G) of a magnetic
group M(G) (in the notation of Ref, 3), termed the co-
multiplicator group, is shown to be isomorphic to the
factor group Z%(M)/B%(M), where Z%(M) is the group
of n cocylces with arguments in M and values in the
unimodular complex group U(1), and B%(M) is the cor-
responding group of » coboundaries. Thus the problem
of obtaining the classes of factor systems reduces to
the problem of algebraic topology.

Since the majority of the solid state physicists work
with matrix methods, we have explained here the matrix
methodical procedure of constructing the comultiplicator
K(M, G). In this we follow the original method of
Schur®!! for linear groups. No proof has been given,
since Janssen has already proved® the necessary theo-
rems in a rigorous way. In Sec. 2 we have explained
Schur’s original method of constructing K for any linear
group G and we have extended it for a finite magnetic
group. In Sec, 3 we have given examples of some par-
ticular cases.

2. FACTOR SYSTEMS AND COMULTIPLICATOR
GROUP
The magnetic group is defined as

M=GU a,G (1)
where a, is a fixed antilinear operator.
vieG (2)

where 6 is the time reversal operator and v is a fixed
linear operator. We also define the associated linear
group

ay= v,
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M’ =G U v,G. (3)

A representation D(a), o c M, will belong to the factor
system w(a,p), a,Bc M if

D(a) D(B)™™ = w(e, B D(ap). (4)
We have used the following notation
A facG
[a] ’
A {A* if ae M-G, )

where A is either a matrix or a complex number, The
set of complex numbers w(a, 8) satisfy these relations

wla, B wlap, ) =w(a, B w(B,7), ®)
|w(a, B)| =1.
We first mention Schur’s method®11+12 of constructing

the multiplicator XK. Let (a,,a,,...,a,) be the generators
of G and the defining relations be

aiP=e, i=1,2,...,k 1)

n.{i, §}
’

i i
11!1“,]) agz( 13 eee aii

a;a;=a j<i=2,3,...,k

The exponents are all positive integers. We extend G
to G by defining new group elements with the relations
A =F i=1,2,...,k,

AA; =@ AN D ARG e gTthD - j<i=2,3 ..k,
JEGNAR=ALIG, ), m=1,2...,k j<i=2,3,...,k
I, ) Jm,n) =J(m,n) J@G,j), n<m=2,3,...,k,

j<i=2,3,...,k
(8)

From this set of relations we obtain positive integers
n(i, j) such that

J(i’j)"(i'j)=E, j<i=2’ 3;--v;k. (9)

One then obtains the derived group [é, G], the group
generated by the elements §,2,27'g;!, 2;,8;< G, and the
group y, generated by the elements J(, j). Schur has
shown that

K=[G,G1ng. (10)
K contains elements of the form J(i, §)°1%9,
J@, P2 L d(, ) e 0 where the b,(i, j) are
positive integers. If e(, ) are the n(i, j)th primitive
root of unity, then the allowed sets of factor systems
are obtained by substituting e(z, j°»‘"+? for w(s, j).

We extend this method to finite magnetic groups. Two
cases arise.

(1) v} =e, so that M is generated by (a;, a, ..., @,
00y = ay.1);
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(ii) v§=a,, so that M is generated by (a;, ay, ..., a,.,
91)0)0

We treat these two cases separately. In the first case
we define a matrix group extension ¥ of M:

AA =0, HABED ARG D e pH D =23 Lk
A’i'(i):E) i=1,2,3,. ooy B
Ak-riA;( =J(k+ l,j)*Ag'i(kﬂ'j)AEZ(k"l'” .e ,A:ﬁﬂml.i)’

j:l,z,...,k,

b

Ak,ﬂA:q:J(k“' 1) E,
AT ) =dG DA, j<i=2,3,...,k m=1,2,3,...,k,

AR+ 1,5)* =d(k+ I’j)*Am’ i=1,2,3,...,k,
m=1,2,3,...,k,

A dR+D)=Jdk+1)A,, m=1,2,3,...,k,
A G )  =dG, ) Ay, §<i=2,3,...,k,
Apdk+1, ) =dk+1,)*A,,, i=1,2,3,...,k,
Ak +1)* =J(k+1)14,,,

J@, N Im, n)=J(m,n) G, ), j<i=2,3,...,k,
n<m=2,3,...,k,

JE, DI+ 1, n)* =J(k+1,n)* JG, ), J<i=2,3,...,k
n=1,2,3,..., k%,

JENIR+ 1) =Jk+1)JGC75), j<i=2,3,...,k,

JE+1, ) I+ 1,n)*=Jk+ 1,n)*J(k+1,4)*,
i=1,2,3,...,k,
n=1,2,3,...,k,

JEk+1L, IR+ =JE+1)JE+1,7*, j=1,2,3,...,k

(11)
It should be noted that the positive integers »; (2 + 1, j)
are obtained from the structure of M’.

0@y = AR I ) o gL D gt D
i=1,2,3,...,k.

Manipulations of these relations give us
JE, NP =E, j<i=2,3,...,k

Je+1, 0D =g i=1,2,3,...,k,
J(k+1)""D =E,

(12)

We construct the derived group [M, if] as the group
generated by the elements

M;Mﬁi]idﬁim.j] Mg-f”i'ﬁf;"f”, (13)

where Mi is the matrix corresponding to the element
#1;€ M, and M, is the matrix corresponding to the ele-
ment ;. If 7, is any of the elements J(, ), J(k+1,j)*,

or J(k+1), then M;. is simply inverse of the correspond-

ing matrix. ¢ is defined as the group generated by
J@,7), J(k+1,7)*, and J(k+1). Then

KM, G) =3, M]n §.

K(M, G) contains elements of the form J(i, j)° ‘%7,
J(k+ 1, *Fnli D gk +1)°m* with integral

b,G,7), bale+1,7), b, (k+1). If e(,j) is the n(i,j)th
root of unity and e(k + 1) the n(k + 1)th root of unity,
then the different sets of factor systems of M(G)

14)
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will be obtained by substituting e(z, /)°»'%# and
ek +1)’m*D for »(i,5) and w (@1, @p.q). It can be shown
with the help of Eq, (6) that J(2+1)’=E,

In the second case I is constructed by the following

prescription, We start with the structure of M’, whose

generators are (a;, gy, ..., d,, vy):

af'P=e, i=1,2,3,...,k-1, vh=a, h"W=e,
i i fyq(i, i)

a,-aj=a;'1“'” a;)_(t.:) P .akfii 4

= g0 mgt0 ) o0y =80 d)
voa; = aftt ) gt @y T, §=1,2,3,...,k-1.
©,
v,

, j<i=2,3,...,k—1,

(15)
We construct M by the following relations:

A =G, 1) AED A 5D e AT,
j<i=2,3,...,k-1,

A =E i=1,2.3,... k-1,
AR = J(0, IXAT 0D Az --A:f;‘(o'”A'(;o“"”,
AAT=J(0)A,, AYP=E,

Apd@, ) =d DA 1<i=2,3,...,k
m=1,2,3,...,k~-

AmJ(O’j)*:J(O’j)*Am, i=4,2,3,...,k-1,
m=1,2,3,..., k-1,

A, JO0)=J(0)A4,, m=1,2,3,...,k-1,
AJ G =dG, )M A, j<i=2,3,...,k-1,
A0, ) =J0, H*1A,, j=1,2,3,..., k-1,
A, J(0)* =J(0)1 A,,

J@, Pd(m, n) =d(m,n)J(i, ), j<i=2,3,...,k~-1,
n<m=2,3,...,k-1,

J(, ) IO, m)* =J(O0,n)*J(, §), j<i=2,3,...,k-1,
n=1,2,3,...,k~1,

L
1

b

JG, ) JO)=J0) JG, ), j<i=2,3,...,k-1,
J(0, )* J(0, n)* = J(O0, n)* J(0, j)*, j=1,2,3,..., k=1,

n=1,2,3,... k-1,
J(0, )* J(0) =J(0) JO, )*, j=1,2,3,...,k-1.

(16)
Afterwards the method of procedure is the same as
that in case (i). In the next section we give examples of
this procedure in some special cases.
3. SOME EXAMPLES
A.M(G)=C,; (C,)
The defining relations of M’ are
di=e, di=e, aa;=a,a,.
1 is defined by
Al=E, AAF=JQ)E, AAf=J(2, 1)*4A,,
AJ@)=J(2)A;, AJ2,1)*=J(2,1)*A,,
AJ(2)*=J(2)14,, A,J(2,1)=J(2,1)*4,,
J(2) J@2, 1)*=J(2, 1)*J(2).
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We get JQ)?=E, J(2,1)*"=E. [M, i1] is generated by
J(2) and J(2,1)*, the generators of J. Hence K(M, G)
is generated by J(2) and J(2, 1)*.
B. M(G) = D,(C,)

The defining relations of M’ are

ai=e, di=e, aa;=a]a,.

M is defined by
Al=E, AA¥=J()E, AA}=J@2,1)*AlA,,
AJR)=JQ2)Ay, A2, 1)*=J(2,1)*4,,
AJ@)*=J@)14,, A,J(2,1)=J(2, 1)*14,,
J(2) J(2, 1)* =J(2,1)* J(2).
We get J(2, 1)*"=E, J2V¥=E

[M1, 1] is generated by the elements J(2), J(2,1)* "2,
J(2, 1)*2, J(2, D*AT? g2, 1)*™1AL 1f n=o0dd or 4m+2
then J(2,1)*c [M M] If n=4m, then J(2, 1)*¢ [#1, #1],
but J(2, 1)*2 < [M, M].

Thus, for n=4m, K(M, G) is generated by J(2) and
J(2,1)*?; and for n=odd or 4m +2, K(M, G) is generated
by J(2) and J{2, 1)*.

C.M(G)=D,®I(D,)
The defining relations of M’ are

ai=e, el=e,
ayas, Q30,=aya;.

n_ — gn=1
aj=e, a,a,=ai > ay,

azaq =
M is defined by
=E, A}=E, A;A¥=J(3)E,
A =JR,1)ATYA, AAT=J(E,D)*AA,,
AAF =J(3,2)*AA;, AJ(B)=J(3) A,
AP, 1)=J@2, 1A, AJE,1D)*=J(3,1)*4A,,
AJ(3,2)*=J(3,2)*A,, AJ(B3)=J(3)A,,
A2, 1)=J(2,1) Ay, AJ(B,1)*=J(3,1)*A4,,
AJ(3,2)*=J(3,2)*A,, AJB)*=J(3)14,,
AJ2, 1)*=J(2, 1)1 4;, AJ(3,1)=J(3,1)*14,,

5N J. Math, Phys., Vol. 17, No. 4, April 1976

AJ(3,2)=Jd(3,2)*14,;, J(B)JIQ2,1)=J(2,1)J@3),

J(3) J(3, 1)*=J(3, 1)*J(3), J(3)J(3,2)*=J(3,2)*J(3),
J(2,1)J(3, 1)*=J(3, V*J(2, 1),

J(2,1) J(3, 2)* =J(3, 2)* J(2, 1),

J(3, 1)* J(3, 2)* =J(3, 2)* J(3, 1)*.

We get J@)2=E, J(2,1)"=E, J(3, )*"=E, J(3,2)"=E
[#1, M] contains J(2), J(3, 1)* J(3,2)%, J(2,1) AT?,
J(2,1) AL, Hence if n=2m, K(M, G) is generated by
7@, J@. )", I3, 1*, J(3,2)*; and if n=2m + 1,
K(M, G) is generated by J(2), J(2,1), J(3,1)*, J(3,2)*.

D. M(G} = Czn(cn/
M is defined by
=E, AAI=J(0)A,, AJ0)=J(0)" A,

We obtain J(0)*"=E. [i1, M) and hence K(M, G) are
generated by J(0).
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Spinor representations and projective factor systems of

crystallographic point groups
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We have given the correspondence between the factor system of the spinor representations of the different
crystallographic point groups and the factor system given by Doering and Hurley. It turns out that for the
groups C,, G, C;, C,, Cy, Cyy Sy Copy Cs, Cyiy Cayy Dy, Dy, Co, G,y Csy the factor system of the spinor
representations are associated with that of the vector representations.

1. INTRODUCTION

It is well known that the spinor representations! of
the rotation group and the Lorentz group can be looked
upon as projective representations®s® of the respective
groups. The equivalence of them has been emphasized
by many authors. *~® For the Lorentz group and the rota-
tion group there is just one factor system (other than
the trivial factor system of the vector representations)
to which the spinor representations are associated. !
For the crystallographic point groups the nonassociative

factor systems and the corresponding representations
have been worked out by Doering®® and Hurley.!! Here
we have given the factor systems of the different crys-
tallographic point groups (in Hurley’s notation) to which
the spinor representations of the groups are associated.
For the spinor representations we use the factor system
given by Zak el al.® For the groups C,, C,, C,, C,, Cy,
Cy, S45 Capy Gy, Cyyy Gy D3y Dyyy Coy Copy G, the
factor system of the spinor representations are asso-
ciated with that of the vector representations.

TABLE I. The factor systems of the crystallographic point groups to which their spinor representations are associated and the
corresponding «(g)’s defined in Eq. (4). p=exp(ri/4). ¢ =exp(ni/6).

Serial Point Doering and Hurley’s notation of fac- Factor system to which  The numbers a(g) and their
number group tor system and identification with the spinor representa- interrelations
point group operations tion belongs
1 Cy Al=E A=l Vector a(E)=1, a(h=1
2, Cy,Cq Al=F, A=C,,IC, Vector alE)=1, a(A)=x1
3. Cop A'=F, B*=E, BA=qAB Vector alE)=1, a(Cy)==xi, aD=x1
a=x1, A=C,, B=1I a=1 aICy) =alD a(Cy
4, Dy, Cy, A=E, B'=E, BA=qAB Projective a(E)=1, g(A) =27, a(B) =21
o=+1, A=U* B=UF, I" a=-1 a(AB)=ald) a(B)
5 Dy, Al=F, B*=FE, 6 BA=yAB Projective For the elements g D;, alg)
2 _ = - are the same as in the case 4
C:=E, CA=gAC, CB=qBC a, B=1 =211, ollp —alDale
a,B,y==1. vy=-1
A=U%, B=U*, C=1
6. C4,S, AY=E A=C%IC? Vector aE)=1, @) =2p, +p"
alA™ = [p(A))", m=2,3
7. Can A'=E, B'=E, BA=aAB Vector For the elements gc Cy, a(g)
_ A=C: B=I -1 are the same as in the case 6
a=xl, A=CE B= as aD=21, alg)=alal@
8., D, A'=qE, B:=F, BA=A"B Projective a(E)=1, a(CP=2i, a(U¥) =zi
a=x+1, A=C§, B=U" a=-1 o (CTH = (g (CP™, m=2,3
a (U =a(UMa (CH
a () =a(UHalCh
a () = (M a(C]H
9, Dy, A'=qE, B'=E, BA=A’B Projective For elements g Dy, a(g)
9 _ =vBC =-1 =1 are the same as in the case 8
C7=E, CA=pAC, CB=yB a==1.p v= al=x1, alg)=aa(@
a,B,y==x1
A=Cf, B=U*, C=1
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TABLE 1. (Continued).

10. Cs A'=E,6 A=C} Vector a(E)=1, a(CH=-1, explxri/3)
(hexagonal axes) 0 (C3 = (CPHI?

11, Cy A3=E,6 B'=E, BA=AB Vector For elements gc C;, a(g) are the

same as in the case 10
A=C3, B=I ah=x1, alg)=alalg)
{hexagonal axes)

12. D;,Cy, AS=E, B*=E, BA=AB Vector a(E)=1, a(CH=~1, a(CPH =1
A=C§, B=UF, I¥ a(UF =21, a{U) =a(CH(TU)
(hexagonal axes) a {0 =—a(CHa (T

13. Dy, AS=E, B’=E, BA=0A"B Vector a(B)=1, aICH=2x1
a=11, A=IC§, B=U" a=1 a("CP) = [a(CEDI™, m=2,3,4,5
(hexagonal axes) a (U9 =a () =g (U™) ==x1i,

& (IU%) = (IVY) = TU)
=—gCHa (UF)

14. Cq AS=E, A=Cf Vector o(E)=1,0(C)=xt,+i,2£°
(hexagonal axes) a(CP) =(a(CPI™,m=2,3,4,5

15, Cen A=F B'=E, BA=aqAB Vector For elements gc Cq, a(g) are the
xes1, A=t 51 sape i in o cagt 1
(hexagonal axes)

16. Cay AS=E, 6 A=IC% Vector a(E)=1, qUCH =xt, +i,+£°
(hexagonal axes) a e = ICHI™, m=2,3,4,5

17, D¢, Dy, Af=F, B’=E, BA=gA"B Projective a(E)=1, ol =xi, a(B)=xi
a=x1 =-1 ald™ =(g(AN",m=2,3,4,5
A=C§, IC%, B=UF o/ (AB) =0 (A%B) = ¢ (4°B) =a (A)a(B),
(hexagonal axes) @ (A%B) =q(A'B) = (B)

18. Dy, A, B and their multiplication Projective For the elements g€ Dg,, a(g) are
laws as in 17 _ _ the same as in case 17
I’=E, IB=8BI, IA=yAl a=-1,8y=1 a=zx1, aUg)=aDalg)
a,B,y==1
(hexagonal axes)

19, T A’=qE, B'=qgE, BA=qAB Projective ¢ (EY=a(Uf) =g (U") =a(U¥) =1,
C3=E, CA=BC, CB=ABC a=-1 0 (C99 = (CP =0 (CP?) = (CHPD
a=x1, A=U? B=UF =£ —1,-¢*

C=Cy* o (CF%) =0 (CF9) = — o (CFB
= — o {CP¥ =l (CPI ]

20. T, A,B,C and their multiplication Projective For the elements g T, a(g) are the
laws as in 19 _ same as in case 19.

IP=E, IA=AI, IB=BI a=-1 ah=+1, aUg)=aDalg)
IC=CI

21. 0 A,B,C and their multiplication Projective o (E) = (U® =aq (U =a (T
}JazvisEa,SDﬂ iZBD, DB=gAD, a=-1 =a(CF9) = (CF9 =1,
DC=CD, g=21 o (C¥9 =a(CP9 = (CPH =a (CPH
D-p= =q(CF") = (CFH) = -1,

o (U9 = (U%) =q (U9 = (U9
=0 (U™) =g {CF) = - (1A
=—q(CP=-a(CP=-a(Ch
=g (CP) =~ (CIH =21

22. Oy A B,C,D and their multiplication Projective For the elements g O, a{g) are
laws as in 21. _ the same as in case 21
P=E, 1A= AILIB=BI, a=-1 a=+1, alg)=a Dol
IC=CI,ID=3DI p=1
o,8=x1
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2. PROJECTIVE REPRESENTATIONS OF FINITE
GROUPS

For any finite group G, the projective representations
DX g,) belonging to the factor system Mg,,g,), g;,8;€ G,
satisfy the relation?

D)‘(gi)Dl(gj):)“(gi’gj)Dx(gigj)’ (1)
Ik(gi,gj)| =1.
The Mg,,g,)’s satisfy

)\(g{’gj))\(g{gj,gk):)‘(gi’gjgk)x(gj’gk)' ()

Conversely,” any set of complex numbers M g,,g,) with
moduli 1 satisfying Eq. (2) will form a factor system.

Another such set A(g,,g,)’ will be a factor system as-

sociated with Mg, g;) if there exist numbers a(g)), g,

€ G, such that

A'(gi)gj),: a(gi)a(gj)a(gigj)-l)‘(gi7gj)3

If the operator Og, corresponding to the group element
g, gives rise to the representation belonging to the factor
system A\(g,,g;), then

¢
05,=(g))0,, (4)

£

will give rise to the representation D*g,) = a(g,)D*g,)
which belongs to the factor system Ag,,g,).

The distinct classes of nonassociated factor systems
for a finite group can be obtained from Schur’s multi-
plicator group.*:!* For the crystallographic point groups
Doering!® has given the nonassociated factor systems
and the character tables for each group. Hurley'! has
given all the irreducible matrices. For the spinor rep-
resentations of the crystallographic point groups we have
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taken the representations given by Zak et al.,'* which
are not all associated with some nontrivial factor sys-
tem of the corresponding groups. We have tabulated in
Table I the complex numbers a(g,) so that 0} will be-
long to a factor system given by Doering and Hurley,
and O, will belong to the factor system of the spinor
repres’entations.
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Removal of the nodal singularity of the C-metric
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Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616

(Received 24 June 1975)

The charged C-metric is transformed into another exact solution of the Einstein—-Maxwell field equations
corresponding to a massive charged particle accelerated by an electric field. When the appropriate
equations of motion are satisfied, the nodal singularity associated with the C-metric disappears.

A nodal singularity associated with the charged C-
metric! is indeed a manifestation of the neglect of the
force necessary to accelerate a massive charged parti-
cle, as has been suggested® by Kinnersley and Walker,
By transforming the charged C-metric into another
exact solution of the Einstein—Maxwell field equations
with an additional parameter E, representing an electric
field, the nodal singularity can be eliminated by choosing
the value of E, appropriately. For example, in the case
of small acceleration A, the requisite condition is found
to be eE,=mA, in accord with Newton’s second law.

I. TRANSFORMATION OF THE CHARGED C-METRIC

In terms of the retarded null coordinates employed in
Ref. 2, the charged C-metric can be expressed in the
form

ds® = -Hdu® - 2 du dv — 2A7" du dx + V(G dx* + G dz°),
where

G=1-x%-2mAx® ~ e2A%*,
H=-A%2G+ ArG’ + (1 + 6mAx + 6224%?)

~-2(m +2e%Ax)r™ + %72,

As in Ref. 3, where we transformed the Reissner —
Nordstrom metric (A =0) into another solution of the
Einstein—Maxwell field equations with an additional
magnetic field, we introduce complex electromagnetic
and gravitational potentials associated with the space-
like Killing vector a,. In the present example

& =-iex, &=-[rG(x)+ex?].

The field equations are left invariant under a group
of transformations which were discussed by Kinnersley.*
In particular, we shall employ the Harrison-type
transformation

' =AND +5EL), ET=ATE,
where
A=1+iE® -1E2E.

From the reality of £’ it is clear that the transformed
metric is static rather than stationary. Because A is
real, we may write the transformed metric as follows:

ds® = N*(= Hdu? - 2 dudy - 2A%° du dx + v*G™ dx?)
+ A-22G dz2.

Applied to Minkowski space, where A=wm=e =0, this
transformation produces the electric analog of Melvin’s
magnetic universe,® with the electric field in the direc-
tion opposite to the polar axis (cf. Ref. 3). Applied to
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the general charged C-metric, the transformation yields
a solution which resembles the electric universe asymp-
totically, but which also has a black hole accelerating in
the direction opposite to the polar axis.

Il. EMBEDDING OF =* (u,r)

We may embed the 2-surface £*(u,r) defined by u
=const, y=const as a surface of revolution in Euclidean
space. The induced metric on Z* is simply

do?=7y*(G" dx®+ G dz?),
where G = AG(x) = G(x)/[(1 + 3eEx)? + $E 42 G(x)]2.

There are two zeroes of G(x) between which G(x) is
positive. The function G (x) has the same properties in
the interval x,< x < x,. We introduce the angular
coordinates

6= "G 2ax, ¢p=rz,
x

where, to avoid a node at the north pole 6§=#6,=0, we
choose

o Ldq|
2 dx “

p(8) =k G(x(8))]'/2.

Then the induced metric on =* can be expressed in the
form

do?=y*(d6* + p*(8) d¢?).

To avoid a node at the south pole, one requires that

Explicitly, this equation (which does not involve #)
reads as follows:

2,(1+ 3mAx, + 2e2A%x,%)/ (1 + Se Eyx,)!
= —x,(1+ 3mAx, + 2e24%x,?) /(1 + seExx,)".

For sufficiently small values of the acceleration A4,
the zeroes of G(x) are located at x,=-1-mA and x,=1
~mA, respectively. One concludes, therefore, that in
this regime the constants e, E,, m, and A must satisfy

eE,=mA,

which is precisely the same relation one might expect
on the basis of classical mechanics.

While the replacement of the charged C-metric by our
solution with an appropriately chosen value of E, permits
one to avoid the problem of the nodal singularity, it re-
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mains to be seen whether the proposed physical inter-
pretation of the solution can be fully justified,
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Probability measures on fuzzy events in phase space*
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The notion of fuzzy sample point is introduced, and generalized probability measures on fuzzy events are
defined. This leads to the concept of spectral measure on fuzzy events. It is shown that such measures can
be associated with quantum-mechanical states when the fuzzy elementary events are represented by

Gaussian distributions on phase space.

1. INTRODUCTION

The modern approach to probability theory dating
back to Kolmogorov’s formulation is based on the con-
cept of probability space, defined as a triple X,A,P)
consisting of the sample space X, a Boolean o-algebra
A of events in X, and the probability measure P, char-
acterized by its property of o-additivity and normaliza-
tion to unity on X. Underlying the empirical interpreta-
tion of P is the assumption that given an event 4, any
experiment ultimately provides data which can be un-
ambiguously described by elements of X even when X
has a cardinality equal to that of the continuum.

In this note we investigate the possibility of generaliz-
ing basic probabilistic concepts to the case when the
sample points are “fuzzy.” The obtained formalism is
then considered in the context of quantum mechanics,
with the aim of arriving at a stochastic description of
measurements of noncommuting observables.

In Sec. 2 we eXamine the operational meaning of fuzzy
sample points by relating them to the calibration pro-
cedure of instruments used in measurement, In Sec. 3
we formulate the concept of fuzzy event and introduce
probability measures on such events. This leads in a
natural manner to a generalization of the concept of
spectral measure associated with two or more observ-
ables. After treating this concept in a general context
in Sec. 4, we turn to the special case of generalized
spectral measures associated with simultaneous mea-
surement of position and momentum of quantum-
mechanical particles. Thus we arrive at a specific
proposal for assigning probability measures in phase
space to every quantum mechanical state.

Basically, there have been two types of attempts at
a stochastic formulation of quantum mechanics. The
first type had been advocated by Moyal® and was based
on an interpretation of the Wigner transform w, (¢, p) of
a statistical operator p as a probability density in phase
space. It ran, however, into the problem of interpreting
negative probabilities since w,(g,p) is not positive de-
finite. The other type had been introduced by Dirac?
and led to complex probabilities, It was later indepen-
dently considered® within the context of complex prob-
ability measures. It was shown® that an empirical mean-
ing can be assigned to this concept, but when the
formalism was applied to quantum mechanics, this in-
terpretation ran into the difficulty® of having the family
of events in phase space dependent on the considered
state p.
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In contradistinction with the above attempts, the prob-
ability measures in phase space considered in Sec. 5
are positive-definite, being actually derivable from the
Husimi transform® of p. However, they are probability
measures on ‘“fuzzy” events of the type introduced in
Sec. 3 and are not derivable from conventional probabil -
ity measures® on “sharp” events; in view of the uncer-
tainty principle, this fact is not surprising. On the other
hand, they do reduce to the conventional probability
distributions in position or momentum in the limiting
case of infinitely precise position and infinitely precise
momentum measurements, respectively.

2. FUZZY SAMPLE POINTS

The conceptual framework for probability theory ad-
vocated in the next section rests on the observation that
the outcome of any realistic simultaneous measurement
of n real stochastic quantities 4,, .. .,A, cannot be
exhaustively described by only » numbers (a,, . . .,&,),
except in those cases when the respective sets o{4,),

. .,0(A) of values in R' which these variables can
assume are all finite or at most countably infinite dis-
crete subsets of R', In general, however, one should
specify to what degree of certainty is some X, # o, and
not «, itself the actual value of 4,. This stipulation is
essential in objectifying the measurement process at
least in the minimal sense of securing concurrence be-
tween different measurements carried out on the same
sample with different instruments of varying accuracy.’

We adopt the attitude that an exhaustive description of
the measurement outcome can be achieved by providing
in addition to the n-tuple ¢ =(ay, . . ., ,) also a non-
negative function x(1), Ae R", with a maximum at a.
This function x(}) provides a measure for the relative
certitude that A& o{4,)x-c<x (4 ) and not a is the
actual value of the extracted sample point. We shall re-
fer to the pair o= (a,X) as a fuzzy sample point and to
x as the confidence function of a. For a given instru-
ment ¢ supposed to measure values from some subset
A of the joint range o(A4,, . . .,A )of 4;,...,A,, we
shall call the procedure of attaching to each o< A a con-
fidence function x, the accuracy calibration of ¢. In
view of the probabilistic interpretation of calibration
that we shall promptly advocate, we require that

S xNar=1. 2.1)

Since the applications considered in this note relate
to quantum-mechanical observables with continuous
spectra, let us specialize our treatment to independent

Copyright © 1976 American Institute of Physics 517



stochastic variables A, .. ., A for which o(4,),

o(A,) are closed intervals on R' and which can assume
any value from the n-dimensional closed interval ¢
=0(4,,...,A)=0(A)x-+-%X0(4 ). Under these circum-
stances we request that xe C*(0), i.e., that it be
infinitely many times differentiable on 0. We shall also
talk of a sharp sample point @, which in analogy with a
fuzzy sample point can be represented by the pair
(a,8,), where 6,() is the Dirac function 6‘”(a ~ A} in
R", Such terminology suggests an obvious operational
meaning for the confidence function y of a.

Let us discuss first the case of a single stochastic
quantity A measured by a given instrumentﬂ For
some readmg a,c R of 9., the value x,(2,) at A, of the
confidence functlon of ozk could be taken® to be the prob-
ability density for the actually determined value of 4,
having been in reality A, when a reading ofﬂ y1e1ded
@,. Thus, assuming that sharp sample pomts could be
prepared, a calibration of ¢, could be carried out by
comparing readings ofﬂk against perfectly accurate
instruments which prepare sharp sample points.
Naturally, since in reality such ideal absolutely precise
apparata do not exist, the calibration procedure has to
rely on results obtained by checking each imperfectly
accurate instrument against some other such instru-
ments. Nevertheless, as long as we admit at least the
possibility of indefinitely increasing the precision of
the instruments preparing or measuring samples of 4,,
we can view the concept of sharp sample point as a
limiting process in analogy to viewing the & “function”
as a 0 sequence of actual functions.

Such an interpretation of a fuzzy sample point ‘;k
leads to the expression

Ha)=[ r(y) (s Xp)
for the probability density of ‘;k derivable from the
probability density #(8,) for sharp sample points (Bk,GB ).
Indeed, (2.2) is the only expression compatible with the
request that x(8,)= (ozk) when a 6 distribution »(x,)
= &(x, — B,) of sharp sample points (8,,d k) had been
prepared.

-~

X ) dr,, = (2.2)

In case of two or more stochastically independent
quantities A, . . .,4, it is not necessary to assume that
arbitrarily precise simultaneous measurements of these
n quantities can be performed in order to give an
analogous operational meaning to a confidence function
of the form

X()“L, - e ,An)le(Al)'

If the fuzzy point &= (a, x) With the above confidence
function is the outcome of the calibration of an apparatus
9 for the simultaneous measurement of A,, . . .,A_, when
when the reading of ¢ is a=(¢,, . . ., @, We give each
Xy(A), k=1, .,n, the same meaning as in the calibra-
tion of the instrument ,Q'k measuring only 4,. In other
words, we adopt the principle (cf. Ref. 8, E-principle)
that if a family # of samples with sharp values g, of 4,
has been prepared with a totally random distribution in
those values, then the simultaneous measurements of
A, ..., 4, ...,A, which yield the value a, for A, cor-
respond to a subfamily 7, of 7 in which the distribution
of the 8, values is described by x,(3,). Naturally, the

X (0. (2.3)
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impossibility of actually producing absolutely sharp
values for A4, necessitates the same type of concurrence
approach to the calibration of ¢ as used in the calibra-
tion of an instrument ﬂk measuring A, exclusively.”’

3. FUZZY PROBABILITY SPACES

Let us generalize now the concept of probability space
(R",A", P) over the family A" of Borel sets in R" to the
case when the samples are fuzzy rather than sharp. We
start from the assumption that a family §” is given
which consists of fuzzy sample points that can be ob-

tained by the simultaneous measurement of A, .. ., A
with a certain class of instruments.
We define a fuzzy event Aasa family
A={a|aca,xMNeLli(a)}, ach, 3.1
of fuzzy sample points, a unique fuzzy point a bemg
attached to each @ from a Borel set A€ A7, i.e., A is

determined by the function x,(1) on AXIR"; in addition,
we impose on x,(A) the condition that it be Lebesgue in-
tegrable on A for each fixed A. We shall refer to the

L*(a) (ina) nonnegative function x,(A) as the charvacier-
istic function of the fuzzy event A. If A consists of only
one point, i.e., A={a}, then we shall say that A is an
elementary fuzzy event. Obviously the family of ele-
mentary fuzzy events coincides with the family §” of
fuzzy sample points.

Two fuzzy events & ={x¥|ac A®}, p=1,2, will be
said to be compatible it and only if x{V'(n) = m()\) for
all @z AV N A®  In particular, we note that &, and &,
are compatible whenever the Borel sets A, and A, are
disjoint.

We denote by &7 the family of all fuzzy events (3. 1),
A fuzzy event A can be viewed as the outcome of the
calibration of an instrument ¢ for the simultaneous
measurement of A, . . .,A on the section A of its
scale S(¢ )CR". Thus, compatible fuzzy events A, and
&2 are either the outcome of measurements with one

"instrument or with replicas of the same instruments ¢,

or with two distinct instruments ¢, and ¢, of identical
calibration on that part of their overlapping scales S${¢))
M §(¢,) which contains the Borel set A, M A,,

If A,, A,=¢ are compatible we shall write A4,
and define

(3.2)
(3.3)

gl/\ &2:{0;]015A P:Az};

AV a,={alacza VA

as their intersection and union respectively. It is easy
to check that the family ¢ is a partial Boolean ring®
under the operations e, AN, andVii.e., Ao & for all
Acé, A% A, implies AHA and if &,, Az, Aacf are
mutually compatlble then A, /\ A A, AVAMA,,
When AIH Az, we can define their difference
AN A, ={alac a4} (3.4)

If A,= AN &2 we shall say that Zz is contained in A, and
write 4,4 A,
In analogy to an ordinary probability measure on A",

we define a probability measure P(R), Ae En, on fuzzy
events as a not identically vanishing and nonnegative
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function on " which vanishes on the empty set @, i.e.,
P(®)=0, and is o-additive in the sense that whenever
A e M is the union of disjoint fuzzy events,

&:&1\/ &2\/ (RN &,/\ij(b for i#j,

we have

PRY=P(&,)+ P(A,) +2 oo . (3.5)
Furthermore, since a small change in calibration
should produce only a small change in the probability
P(A) of a given fuzzy event, we impose the additional
condition that

lim P(A%®)=P(A),
Atr) 2
for any sequence A® ={(a,x) ac A}, k=1,2, -,
for which at each ac A the confidence functions x{¥
converge to the confidence function x, in (3.1) (ina
topology related to the particular nature of the in-

struments used in measurements of 4,,...,4).

We easily see that if (R”, £", P) is a fuzzy probabil-
ity space, then for any compatible 4,, &,c¢&"

P(A\A,) = P(&) - P(&,) if 8,4 4,
P(A,VA,)=P(A)+ P(&,) - P(A,A\A,).

VAcén, (3.6)

3.7
(3.8)

_ As a matter of fact (3. 7) follows from the fact that
a8,=4,V(8,\4,) and A, A (A\ 4, )=0,while (3.8) is a
consequence of (3,7) and the relation

P(ANA,) + P(ANA)) + P(A, AB, )= P(A,V4,).

Since no normalization condition P(B")=1 has been
imposed on P, the numbers P(A) have to be interpreted
as relative probabilities. The reason for avoiding a
normalization condition becomes obvious if we consider
the simplest of the fuzzy probability space (R*, £, P)
derivable from an ordinary probability density w(}) in
accordance to (2. 2):

P(&):fAd"afm,,w(h)xa(K)d"x, A={x acs} (3.9
For a fuzzy

R ={x, |ac R} (3.10)
we have

p(ﬁn):fmnduw(x) JonXaN drar, (3.11)
which in view of the normalization condition

[ o) dn=1 (3.12)

IR

can be equal to one for any distribution w(}) if and only
if

Jon ke dra=1. (3.13)

Comparison with (2.1) shows that (3,13) can be expected
to hold in the special case when

Xol8) = X,(E = 1),

i.e., when R corresponds to instruments which have
congruent calibrations at all points on their reading
scales, but not in general,

vne R, (3.14)
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Many of the basic concepts of probability theory can
be generalized to fuzzy probability spaces as long as
one heeds the compatibility condition. For example,
with any specific global fuzzy event IR" presented in
(3.10) we can associate a nonnegative normalized
measure

P(R":A) = P(A)/P(R"), A<{Rn, (3.15)

on the Borel sets A A" and then define means,
medians, moments, etc., with respect to this measure.
Naturally, the values of the quantities will be dependent
on the choice of ]ﬁ", namely, from the empirical point
of view, on the choice of the class of instruments (with
compatible calibrations) used in performing the mea-
surements yielding the fuzzy sample points. If arbitrari-
ly accurate measurements are feasible, then £ would
contain for each a ¢ R" elementary events x, of arbi-
trarily narrow spread® and P(&), A< &7, would be de-
rivable from an ordinary probability density w(£) in ac-
cordance to (3.9). Thus the case of a probability
measure

PG(A):wa(A) am, AcBr (3.186),

on “perfectly sharp” events A< /A" can be regarded as
idealized case of P(A). Then P,(4) is conceived only in
the limit of constructing more and more accurate in-
struments ¢V, ¢® | leading to 6 sequences X\,
X2, +++ for the corresponding R?,,, R, * ++ defined
as in (3.10); in this limit the fuzzy sample point at each
ac R" becomes sharp, so that (3.9) reduces (3.16).

On the other hand, when arbitrarily precise measure-
ments are impossible—as is the case in measurements
of noncommuting observables in quantum mechanics—
we do not have instrument-independent notions of mean
value, moments, etc., and these concepts have a mean-
ing only within the context of a given class of instru-
ments with congruent calibrations,

4. SPECTRAL MEASURES ON FUZZY SETS

Let now A,, .. .,A, be »n independent observables of
a quantum-mechanical system. In order to avoid
cumbersome notation we consider only the case when
all the spectra o{4,), k=1, ..., n, coincide with the
entire real line R,

If 4,,...,A, commute (to avoid confusion with com-
patibility of events, we avoid the term “compatible”
when applied to observables) the conventional probabil -
ity distribution for the simultaneous measurement of
Ay, .. .,A, can be expressed by means of their
spectral measure {(Ref. 10, Chap. IV, Sec. 1)
EA1reeai4y (A) by the relation

Phiveeerhn(A) = Tr{pEA1r-cs4n(A)} (4.1)
for the state represented by the density operator p. If

a partial Boolean ring £(4,, . . .,A,) is given (cor-
responding to a certain class of instruments), then the
values of the probability measure on £” should be re-
lated to its values (4.1) on A" in accordance to (3. 9)

and (3.16). If we introduce for each A={x,!ac A}le "
the operator
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EAI""'An(A)Zf d"af Xa()\)dEAl"“’A" (4.2)

then we can express this extensmn of PArreesrd, to £n
by (4.1) with Ac A" replaced by Ac &, i.e,

:fAd"afmn Xu (M)
(&)},

P:I""'An(&) deI‘{pE‘?l""

et

=Tr{pEA41»-14 (4.3)
The interchange of the trace operation and the operation
of integration that leads to (4. 3) can be easily justified
by using Tonelli’s and Fubini’s theorems and the stan-
dard calculus of functions on spectral measures. !°

Generalizing from (4.2), we define a spectral mea-
sure on fuzzy events C(4,, . . .,A,) as a family of non-
negative operators E(A)=z 0 wh1ch equals zero on the
empty set and for which

N

BE(&)=s-limX E(A,)

Now B2l

(4.4)

on any Ae &” which can be decomposed as in (3.5). We
note that no further generalization would be achieved by
requiring only a weak limit in (4. 4) since E(A)) +o -+

+ E(Ay) = 0, and therefore the existence of a weak limit
1rnp11es that of a strong limit.

If we accept now the premise that spectral measures
E#41::2+4n(A) can be attached to the fuzzy events cor-
responding to measurements of noncommuting observ-
ables A, .. .,A4,, then clearly &7 is not expected to
contain elementary events of arbitrarily narrow spread
and EAir--14,(A) cannot be constructed as in (4.2) from
its values on A", To what extent are we then limited in
the choice of E41s=+++4,(A) on a priori grounds, i.e.,
due to intrinsic features of the operational
interpretation of PAitr:- “An(A)?

One set of preconditions follows from the observation
that any measurement of 4, . . .,4, is also a measure-

ment of A4,, . ..,4, ;. Thus, for probab111ty measures
on sharp events we have for all A €8T
P:l“"'An'l'An(A"_llel) PAI' ,,_1(A"_1). (4.5)
We expect that a similar relation could hold on the
extensions
PlueestnlB) = [ dra [ XNV dPfureern (4.6)

to fuzzy events A. It is easy to see that this is indeed the
the case for fuzzy sets in which at any fixed o_, € R™"
we have

x (An-ly #): Xa

% p-1x8 nel

S (W dB= X4, (1),

for all B< o(A,). In that case we shall say that the
calibration in the measurement of A is spectrum-
noymalized. We shall denote fuzzy events having the
property (4.7) by A _, XR'.

(N, )X (1),
4.7

Our conclusion is that the relation (4.5) extends to

fuzzy events of the form 5 ><]l?{1 and consequently
(4.8)

EAlicu-IA "-1( - 1)

We expect (4. 8) to hold even when the values of the

n(A,_ XRY) = EAvres
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spectral measure on fuzzy events are not derivable in
accordance to (4. 2) from its values on sharp events.

Naturally, similar relations hold for the case when
A, is replaced by any 4,, k=1, .,n—1, After n re-
ductions of this type we find that E4v-- +4p(A ) is related
to each E*#(4,), which in turn is related by

4(B)= [ an [ x(0)dE]",
) ! (4.9)
Al:{xn‘ne Al}

to the spectral measure EAk(Al) on Borel sets A, < 3.

5. SPECTRAL MEASURES IN PHASE SPACE

Let us consider the simple case of a particle without
spin moving in one dimension and described quantum-
mechanically in the Hilbert space LZ(IR'). If the position
@ and momentum P were commuting observables, the
probability distribution for their simultaneous measure-
ment on the system in the state p would be derivable
from a probability density on sharp elementary events,
which would correspond to optimally precise measure-
ments of @ and P, In actuality, however, uncertainty
relations hold and it is not the 6 eigenfunctions of @ and
P, respectively, but the Gaussian wavepackets (we take
#=1)

o8 (x) = (ns®)/ *exp{- [(x - ¢)*/25%] + ipx} (5.1)

that have the minimum standard derivations in @ and P
compatible with these relations. This suggests that
fuzzy sample points (g,p;Xx) with confidence functions

X5 (o, y) =7t expl{- [(x - ¢)?/s?] - s*(y - p)*} (5.2)

represent the outcome of simultaneous measurements
of @ and P with optimally accurate instruments, and
that it is for probability densities on such sample points
rather than on sharp sample points that one should
search,

Thus we assume that
5@, P)={lg,pxDg,pc R}, 0< s < o}

is the family of all fuzzy sample points corresponding
to the calibration of optimally accurate instruments.
We associate with each elementary event {g,p,s) de-
scribed by x(5, the operator F'F(¢,p,s), constructed
from the spectral measures E9(A) and EP(A) Ach?,
of the observables @ and P, respectively, by means of
the following weak cross-iterated integrals!®:

F((I,PQS):fﬁod f d EPX(S)( ,y).

In (5. 4)

(s)
of Xafl"

(5.3)

(5.4)

fzs,’, is derived from the Fourier transform x‘s’

;cii;(x, y=@mn [ , expli(Guv + xu + yv)]
R

X-)-(a’p(u,v)dudv. (5.5)

It is interesting to note that if it were not for the factor
exp(3iuv) in (5.5) the function x{%) would be identical to

(s)( ,y)

Xayp
With §(@, P) given by (5.3), the family £(Q, P) of
fuzzy events in the phase space R? is unambiguously
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determined in accordance to the procedure depicted in
Sec. 3. Hence a fuzzy event A e £(Q, P) can be specified
by providing a value slg,p) for each (g,p)c A:
52{Xq,p(x’y)zX:fg’p)(x,y)l(q,P)EA}, AEBZ' (5°6)
It is clear that s(g,p) has to be a Borel-measurable
function in order that the characteristic function
X,,»(*,9) of A be Lebesgue integrable on A in g and p.

We define the spectral measure E° +P(A) on£(Q;P)
by the following Bochner integral'®:

E""’(S)zfA Flg,p;slq,p))dgdp. (5.7

It remains to show that E9-P(A) is indeed a spectral
measure on the fuzzy events of £(Q, P) and that it satis-
fies the conditions (4. 8) and (4.9).

We shall prove first that £9:P(A)> 0 by showing that
Flg,p;s)> 0 for every (g,p;s) e 5(Q, P).

We insert (5.5) into (5.4) and reverse!® the orders of
integration. The integration in the weak sense with re-
spect to the two spectral functions E¢ and Ef,’ can be
performed explicitly and yields

Fg, p;s)=(2m)™ fmz S, 0)X$8) (e, v), (5.8)

S(u,v) = exp(ziuv) exp(iQu) exp(i Pv).

The operator-valued function S(x,v) that enters the
above Bochner integral is the function von Neumann
used in his proof of the uniqueness of canonical com-
mutation relations (cf. Ref. 10) and can be rewritten
in the form

S(u, v) = exp(3iPv) exp(iQu) exp(3i Pv)

=exp(3iQu) exp(iPv) exp(3iQv) (5.9)

by using the Weyl relations. If we express )Zf,fl’,(u,v) in
(5. 8) as the product i;s’(u)i;‘s’(v), where

X (x, ) = X X (v),

X (x) = (ns*)™ /% exp[ ~ (x - ¢)%/s?], (5.10)

X% () =125 exp[ - s*(y - p)*],

and take into account that

77X () dEQ = (27)71/3( f_:’ i‘gs’(v) exp(ixv) dv) dE?

woo

= (27)1/? f_:: }és’(v)exp(in)dv, (5.11)

we obtain by performing in (5. 8) the integration in «
cRY:

Flg,pis)= (212 [ dv X' (v) exp(3iPv)
X ([ X! (x) dE9) exp(3iPv). (5.12)
Similarly, by inserting the second expression for S(u,v)

from (5.9) into (5. 8) and integrating in v ¢ R® we arrive
at
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Flg,pi8)=@m2 [ du ¥ w) exp(3iqu)
(7 % () dBE) exp(3iQu). (5.13)

Let p be any density operator with the configuration
representation p(x,x’). By observing that'®

[exp(3iPv)p exp(3iPv)](x,x') =p(x +3v,x’ - 3v)

and inserting in (5.12) the actual values for x{(x) and
X, (), we get

Tr{pF(g,p;s)}= (2ms)* /dvdxp(x+%, x—%)
|2

— 2 2
xn'”zexp (‘ (x qu) ‘4_1;‘2_ —ivp) . (5. 14)

After performing the substitution £=x+ /2,
¢ =x-v/2, (5.14) yields in terms of (5. 1)

Tr{pFlg,p;s)}= (2ns)™? /2 dédg’ p(g, &)
i3

a1 /2 exp (_ (& —g)z G Ciple - £I)>

2s 2s°

=(2m)* Trip| ST [}=o0. (5.15)
This establishes that F(q,p;s) is a positive-definite
operator for all g,pc R* and s> 0.

The fact E9P(@)=0 is true by definition. Further-
more, the weak o-additivity of E9* on £(Q,P) is a
trivial consequence of (5,7) and, as noted in Sec. 4, in
conjunction with the positive-definiteness it implies
strong o-additivity.

It remains to verify the relations (4. 8) and (4.9).
Since in accordance with (4. 7) and (5. 3)

&1Xﬁ1={X§s’(x)x6‘s’(y—p)lqc—:Al}, (5.16)
this task is reduced to proving that ‘
fA dq f-oeo x:s)(x) dE?: EQ(&1)= EQ,P(&1 Xﬁl)
1 -t
=/ _ Fla,pis)dqap, (5.17)
AIXIR

which in turn is established by showing that

T XO(dES = [ Flg,pis)dp (5.18)

for all g R! and all s> 0.

By integrating the expression (5.13) for F{g,p:s) over
R! in the p variable and noting that

S xS dp=1 (5.19)
we arrive at the result
J_ Flg,pis)dp=@n*/? [ auXO @) expliQu),  (5.20)

which according to (5.11) is indeed equal to the left-
hand side of (5.18).
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The counterpart relation

f: X;,(S)(y)dEfzf_*: Flg,p;s)dg, (5.21)
in which the roles of @ and P are reversed, can be
obtained in exactly the same manner from (5.12). This
concludes the proof that (5. 7) has all the expected prop-
erties of a spectral measure on the fuzzy events £(Q, P)
in phase space.

It is interesting to note that the only point in the
entire derivation where we used the specific form (5. 2)
of the fuzzy sample points was in deriving (5. 14) and
(5.15), i.e., the positivity condition, The linearity in
X of (5.4) implies that there are other distributions
Xq,»(¥,) in IR? besides Gaussians of minimal spread for
which this condition can be satisfied, and which there-
fore could play the role of elementary fuzzy events. In
fact, in general a fuzzy sample point (p,q;xq'?) can have
a confidence function of the form

yP(x y jxq'.p'(x?y d“( ’91—'7')3)) (5.22)

where p is a normalized measure on R2X (0, ),

6. CONCLUSION

The results of the preceding section can be extended
only at the price of increased complexity in the notation
to the general case of n particles moving in three-
dimensional space. Thus they provide a framework for
analyzing the motion of such a general system in its
phase space R®". According to (5.7) and (5.15), in the
Schrddinger picture such a study reduces to studying
the time-evolution of the Husimi transform® of the state
of the system. The analysis of Secs. 2 and 3 provides
an empirical interpretation to the mathematical informa-
tion that any such study yields.

If we turn our attention to the asymptotic behavior
in time of the system, then we can apply to the two-
dimensional spectral measures (5.7), or their 6n-
dimensional counterparts, all the techniques used in
studying the asymptotic behavior of ordinary spectral
measures for commuting observables. In particular,
the physical asymptotic conditions!®s** formulated for
commuting observables can be extended without change
to the spectral measures associated with simultaneous
measurements of position and momentum. Moreover,
the very existence of operators representing spectral
measures on fuzzy events in phase space implies that if
the wave operators exist in the strong sense, then
these conditions would be satisfied not only by the posi-
tion o7 the momentum probability distributions taken
separately, but also by the position and momentum
probability distribution of the interacting state and its
free incoming and outgoing asymptotic states.

We should emphasize that the family $(@, P) of fuzzy
sample points in (5. 3) represents the outcomes of
simultaneous measurement of @ and P with optimally
accurate apparatus. If it were not for the uncertainty
relations, any such optimally accurate apparatus would
yield sharp sample points. However, in the present case
the optimally accurate instruments are provided by
those Heisenberg arrangements for gedanken experi-
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ments, which yield the minimum Ap =2-1/25"1 spread in
momentum p compatible with a given spread Ag =212
in position ¢, i.e., for which AgAp=7;. A typical such
setup would con51st of a filtering dev1ce allowing
through only particles of given momentum p, a source
emanating photons of a certain wavelength X and a
microscope with a prism for observing the recoil of a
photon off the particle whose position and momentum is
being measured (cf. Ref. 4, Sec. 4). If the filtering de-
vice is ideal (in the sense of not affecting at all the sys-
tem, if it lets it pass through) the parameter s in (5. 2)
can be expected to be proportional to the resolving
power of the microscope. *

We note in this context that probability measures on
fuzzy events have been previously considered by
Zadeh,? but only for the case when the sample points
themselves were not fuzzy. Consequently, Zadeh’s ap-
proach is not at all suited to the quantum-mechanical
problem considered in this note,

If we compute the mean values @(p;s) of @ and };(p :s)
of P in Sec. 5 for the probablhty distribution functions

Tr{pE? P(A[ ><]R‘)} Tr{pE?(A[¢g])} and Tr{pE? P (R*
x Al p])=Tr{oEP(A[ p)}, respectwely, where
[ ]X]RI {X(s) x)x;(s) )|_m<qlsq,pleml}, (6.1)

R xA[p]={x X2 () |¢’ e R}, -0 < p’ <pl, (6.2)
we get in view of (5.17) and (5.21)
Qois)= [ qd, Tr{pE* (Ag] xRN}

= ad, [T X wa, Tr{pEd), 6.3)
Plpss)= [ "~ pd, Te{pEQ-P (R x A[p))}

—j “pd, f X, (y)d, Tr{pE?} . (6.4)

These quantities represent the mean values of position
and momentum, respectively, for measurements car-
ried out on the system in the state p with instruments
9(@;s) and ¢(P;s) having the calibrations x{* and x}'*,
respectively, at all g,p € R'. They do not comc1de
however, with the expectation values @(p) of @ and P( )
of P, respectlvely, in the state p:

Q)= [ qd, TripES}, (6.5)

p)=[ pd,Tr{pEL}.

This is to be expected, since @(p) is in fact the mean
value of @ for measurements of position carried out on
the system in state p with a perfectly precise instru-
ment 9(@), i.e., an instrument with calibration 5,(x)
at all g € R?; similarly, P(p) is the mean value of P
when the employed instrument ¢(P) has calibration func-
tion & ( ), p= R On the other hand, given this inter-
pretatlon we expect that @(p;s) =~ Q(p) when 9(Q:s) is
very accurate, i.e., s is very small, and that P(p;s)

~ P(p) whenﬂ(P;s) is very accurate, i.e., s is very
large. Comparison of (6.5) with (6.3) and of (6.6) with
(6.4) shows that this is indeed the case; that, in fact,

(6.86)
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Generalized coherent states which are associated with a generalization of the harmonic oscillator
commutation relation are investigated. It is shown that these states form an overcomplete basis in a Hilbert
space of analytic functions. The generalized creation and annihilation operators are bounded except in a
limit in which they reduce to the usual boson creation and annihilation operators. In this limit the Hilbert
space of analytic functions reduces to the Bargmann-Segal Hilbert space of entire functions and in another

limit it reduces to the Hardy-Lebesgue space.

1. INTRODUCTION

In this paper, we investigate generalized coherent
states which are associated with a generalization of the
harmonic oscillator commutation relation, ! It is shown
that these states form an overcomplete basis in a Hilbert
space of analytic functions. The generalized creation
and annihilation operators are bounded except in a limit
in which they reduce to the usual Boson creation and
annihilation operators.?! In this limit, the Hilbert space
of analytic functions reduces to the Bargmann--Segal
Hilbert space of entire functions? and in another limit
it reduces to the Hardy—Lebesgue space.

In the mathematical literature there exists a class
of functions which are one parameter generalizations of
the hypergeometric functions.?® These functions are re-
lated to the elliptic theta functions and are called “basic
hypergeometric functions, ” Their properties are re-
markably similar to those of the usual hypergeometric
functions. Here we will investigate the corresponding
one-parameter generalization of coherent states,* the
harmonic oscillator commutation relation, and the
Bargmann—Segal Hilbert space of entire functions.
Through its dependence on the parameter, the general-
ized commutation relation continuously interpolates be-
tween a commutation and an anticommutation relation.*
The covariant multidimensional generalization of the
harmonic oscillator commutation relation and its con-
nection with dual resonance models in high energy
physics have been discussed in Ref. 5.

2. THE HILBERT SPACE H,

The Hilbert space H,, where 0<¢<1 is a real param-
eter, is spanned by the vectors |»), generated from the
vacuum |0} by the creation operator 4*. The Hermitian
conjugate of ¢* is annihilation operator @, and the fol-
lowing relations hold:

+ +
aad’ =ga’a+1,

©[0)=1, o
Iy =(a*)"|0),
(I’O):O.

The following can be proven using the relations (1):
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a|ny=|n+1),

alm=[n]in-1),

(m|ny=(0]a™a*)"|0)=[n]!6,,,
where

H]=(1~gW/ (1 -g)=1+g+-co+qg"*

116

(2)

is the “basic number »’°% and

m)t=[1112] -« - [n],
[o]! =1.
We will also use [©]=(1 -¢g)™".

The vectors {([n]!)"*/?| n) form an orthonormal basis
and the Hilbert space H_consists of all vectors lfy=
=3 f,ln) with complex £, such that (fl/)=3=,1/,!*[n]! is
finite, If |g)=¥7,2,/n) is also a vector in the Hilbert
space then (flg)=37,f, g,ln]! where the bar denotes the
complex conjugate.

Using Eq. (2), it can be shown that the operators a
and ' are bounded with

lall=a =1 -q)*/?=[=]/2

As g—1, [©] =~ and a and 4" become the usual harmonic
oscillator operators which are unbounded.

3. COHERENT STATES

The vectors | z) =37, (2"/[n]!) %) belong to the Hilbert
space for |z| < (1 —¢g)/2=[~]'/% and they satisfy

alzy=z|2). (3)

They are analogous to the coherent states of guantum
optics? and we will call them by the same name. These
generalized coherent states reduce to the coherent states
of quantum optics in the limit ¢ =~ 1.

Let | w) denote a coherent state with eigenvalue w.
Then

e - n _
wlay =228 _ g5 (@)
n=0 {n]
where E(z) is the basic exponential function® defined by
n  n
E(z)=2J for |z]2<[=]. (5a)
n=0 [71]1
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Another representation which exhibits the meromorphy
of E(z) is

1 , - .
E(z)zm with G(z):ﬂ[}0 (1-qg2).

G(z) is an entire function and lim__, E(z)=e*.

(5b)

Using the coherent states, to every vector |f)
=¥7 of,ln of the Hilbert space there corresponds a
function f(z) analytic in the region |z |2 <[»] by

z)E(EIf):E S,z (6)

It follows that

o= bl = to g
and
Glalfy= 5 [nlfem =2 f(z)
N n Dz ’
where D/Dz is the ¢-difference operator®” defined by
f(z fz) - flgz)
f( )= mpyant (8)

~d/dz.

The relations (7) show that the representation of a
and «* in the analytic function space coincides with the
g-difference operation, and the “multiplication by the
variable z” operation respectively.

4. THE SCALAR PRODUCT

We will now show that by using the notion of “basic
integration, ”®® the scalar product in H_can be expressed
in closed form in terms of the analytic functions cor-
responding to the vectors. The basic integral of a func-
tion F of a real variable x is defined by

In the limit ¢ —1, D/Dz

s F(x)Dx=(1-g)b 2 ¢' F(g'b). (9)
=0

0

In the limit ¢ = 1 the basic integral becomes the
Riemann integral.

The scalar product can be written as

D%z

S Wf(z)g(z), (10)

1

flg ==

where § D?z consists of an ordinary integration over the
argument ¢ of the complex variable z=1z]e'®, and a

basic integration over the modulus squared, i.e.,

- 53 14
SD?*2F(z,7) =} SOD(Iziz)foz dé F(z,2) (11)
We note that

Lim$S D?z F(z, z) =

q-1

fszz z)

= [ Tdx [T dy Fix+iv,x - ).
Hence the notation S D?z.

Also, the weight function [E(gl z!2)]" is zero on the
circles | zI*=4""[»], (1=1,2, +--} and taking any one of
these circles as the upper limit is equivalent to taking
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[«] as the upper limit for the scalar product defined by
(10).

We now demonstrate that the scalar product as given
by (10) yields the same result as (2) for the scalar pro-
duct of two basis vectors.

We have
(zim)=2zm, (zln)=2z"
and
1 Pz =
nsE(q!zlz)Z z
1 ' bpliz1?) o
:2_7780 m]; d¢|z)’"’"exp[z(n—m)¢>]
[}
. D(IZ! ) 2\m
S Bigrzr 217"

-5 i ql 5 th -1 q1+1 m
™ 0 -q 1-4 ’
where we have used (9) and (11).

From (5),

G(g)/ Glg") =(1-g)(1 -

=1 -glz]

_ G\q) 3 q
T -g)" o (l-q)'[l]!

) (l=g)

(12)

(m+1)1

Thus we have shown that

S [D*2/E(q|z|?)]zmz =6, [m]! = (m | n). (13)

It follows from the completeness of basis vectors that
the scalar product for any two vectors in the Hilbert
space is given by (10).

By explicit manipulation of the scalar product (10) we
can now show that the operators “multiplication by z”
and D/Dz acting on functions in the Hilbert space are
indeed Hermitian conjugates. That is,

(14)

D?z -
PIPIRIAR D Dz &)= (

‘2)(zf(z))g(z)
First we treat z and z as independent variables and

generalize the definition (5) of the ¢-difference operator
to analytic functions of two variables,

—, (15)
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and we note that following property of D/Dz:

L G(z), (186)

D
Dr (F(2)G(2)) = ( D2

D
- +
2 F(z)) 6(2) + Flgz)
where the dependence of the functions (if any) on z is
suppressed.

Second we mention that if f(z) is an analytic function
of z alone, then f{z) is an analytic function of z alone and
we can write f(z_)zf(—z), where ¥ is analytic function of
its argument.

Using( ), (15), and (16), we have
72 1 g(2) = Glg(1 - 0)22)F () 5 (2)
(qlzl Do 82)=Glg -q)zz) f(z oo &=
=f>D; [G((1 = )28) F(De(2)]
7 6((1 - )22) T(Egt),
/ _
D — _
57 6l =)z = =264 (1 - ) |2 |V = - .
so that
D%z , D
S FTa @ gy g2 =S D% 5
x[G((1 - g)| 2| (@ g()] + S ﬁ—é—)zﬂ}“)g(z)

The first term on the right-hand side is a boundary
term. To show that it vanishes, we choose |z!2 and z
as independent variables and consider the term is square
brackets as a function of these variables.

We have
DL - D
Dz ~%D(z%)
dp=1%,

SDzzHDz— [6((1 - )| 2! 2F(D)g(2)]

s {eo] I
; s D(izlz)B(!—fp—)——de[G((l-q)lzlz)f(z)g(z)]

Elfdz [G( (1- q)lz‘z)ﬂz)g( Zzlz )

where we have used the fact that

|z|2=[uo]

— Y

121229

b

s -2 F(x)Dx=

o Dx (17

F(b) - F(0)

and that at the upper limit G(1)=0, and at the lower
limit | z12=0; the z integration is over a circle with
zero radius whereas the integrand is nonsingular at the
origin so that the integral is zero and Eq. (14) follows.

5. PROPERTIES OF FUNCTIONS BELONGING TO H,
The mapping of vectors belonging to H_, into func-
tions analytic in the region | zi?<[»] is injective, i.e.,
to different vectors of the Hilbert space H , correspond

different functions analytic in the region | z!2 <[] but
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it is not true that to every function analytic in the re-
gion | z}?<[~] there corresponds a vector in H, For
functions belonging to H .» only certain types of singular-
ities are allowed on the boundary of the region | 2|2
<[e]. For example, one can show that the function [1

— (1 - g)'/?2]"* belongs to the Hilbert space H_ if and
only if & <}. The Hilbert space H, is 1dent1cal with the
space of functions analytic in the reglon lz|12<[=] for
which the norm defined in terms of the scalar product
(10) is finite.

6. THE LIMITSg >~ 1 ANDg >0

Considered as sets of analytic functions, H CH_.if ¢/
<g. Let f and g be entire functions satisfying

fdzzexp(— ’z[z)‘f(z)‘2<°°

and

[ @?zexp(- | z|?|g(2)|2< .

Then

1)2
llmswﬂz

q~1

)= /dzzexp(— | 2|2 f(2) g(2)
The rhs is the scalar product introduced by Bargmann
in his work on a Hilbert space of entire functions. Thus

H, becomes the Bargmann—Segal space in the “limit”
q—1.

(18)

Let f and g be two functions belonging to some H_.
Then

imS ——

q-0

Elg Iziz) PP RAGKAR £#d¢f(e@(i¢))g(exp(i¢)).
(19)

The rhs is the scalar product used in defining the
Hilbert space of functions on the circle !zl =1, Thus
H, becomes the Hardy —Lebesgue space® in the limit ¢
—-0.

7. OVERCOMPLETENESS OF THE COHERENT STATES

The fact that the scalar product can be defined by
(10) allows us to write down a completeness relation for
the coherent states, i.e.,
1 D?z

;S—(q—l-z—‘—g-)|z> (2.—1 (20)
where the / on the rhs denotes the identity operator.
Because of the discrete nature of the basic integral, not
all coherent states contribute to the completeness re-
lation (20). Hence the coherent states form an over-
complete set. Moreover, since the basis vectors |n)
can be expressed in terms of coherent states on a single

closed contour,

Eos

27 z"“ dz

Even the set of states contributing to the completeness
relation (20) is overcomplete.

8. THE INTEGRATION REGION
Egs. (9) and (11) show that S D2z consists of integra-
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tions over circles with radii (¢¥[«])*/?, 1=0,1,2--.
The integration over the Ith circle is weighed by a fac-
tor of 4'. The integrand of Eq. (11) is a function of z
and z and can be re-expressed as a function of z and
V212,

[=]
SD*2F=3 S D(\zlz)f(wF
1]

; (] d
=-55 D(|z|* £ Flz,|z|?
o lzl=tixed %
B Y d_zp(z __q_'_>
2 15 1 l212243 0] 2 '1-¢q

If the function F(z,q'/(1 —q)) has only poles as its
singularities inside the region {z{2<g[«], then the
Cauchy integral formula can be used to evaluate the
contour integral around the [th circle.

It is remarkable that in the limit ¢ — 1, the countably
infinite set of circles moving outward from the origin
covers the entire complex plane, and thus the infinite
set of contour integrals becomes Bargmann’s area in-
tegral. This happens because the ratio of the radii of
neighboring circles is ¢'/2 which approaches 1 and the
radius of the outermost circle is [«]*/2=(1 —¢)"*/2 which
approaches infinity in this limit. In the limit g =~ 0, [«]
— 1 and the infinite set of circles moving inward toward
the origin all disappear into the origin except the outer-
most circle which becomes the unit circle.

Thus, we see that in some sense H, provides a rather
remarkable interpolation between the Bargmann—Segal
space and the Hardy—Lebesgue space.
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A recent generalization of the classical Ornstein-Zernike theory of critical scattering is used to derive
inequalities for the critical-point exponents which characterize a first-order phase transition. These
inequalities for fluids are found to differ from the corresponding Buckingham—Gunton inequalities for

Ising ferromagnets and the Josephson inequality.

In the absence of a general theory for the calculation
of critical-point exponents, the derivation of inequali-
ties for critical exponents has proved rather useful for
both experimental results and theoretical works. The
more fundamental inequalities—the Rushbrooke and the
Griffiths inequalities—are common both to ferromag-
nets and to fluids. ! There are, however, several in-
equalities for ferromagnets which have not been proved
for fluid systems. In this note we derive inequalities
which differ from their counterparts for ferromagnets
by using the recently extended theory of Ornstein—
Zernike? which entails n=0.

In Ref. 2 the inequality
y < 2v (1)

was derived. However, it is clear that the analysis does
not single out a particular approach to the critical point.
Hence, in particular, for an approach along the coexis-
tence curve one has that

20, (2)

(Strictly speaking we have y; <2v} and y; <2v}. How-
ever, in agreement with available experimental data,
we consider equal exponents on the saturated liquid and
saturated gas side of the critical point, that is,
VEvp=vgand ¥ =y =75 )

Consider the energy in terms of the net correlation
function G(») and the pair potential «(¥):

U=3kpTNd + iV f (1+ G u@)dr, (3)

where d is the spatial dimensionality of the system. In
terms of Fourier transforms the caloric equation of
state (3) becomes

U=k TNd + LVa(k=0) +[v/2(2m)?] [ G(k)ai(k) dk,
()

where we suppose that 0< |#(k=0)|< «. This assump-
tion should be quite general for fluid systems.

In the Ornstein—Zernike theory,? near the critical
point, d>2, and for k* small, G(k) is given by
I
Glr)=3 22 [L,/ (@ +A;) + LT /(2 +AD), (5)
i=t
where 1A, =" as t—~0, where v,>0, j=1,2,...,1,
with /= I[(T'- T,)/T.!. The exponent v;, of course, de-
pends on the direction of approach to the critical point.
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From (4) and (5) we have for the specific heat at con-
stant volume C; as the critical point is approached
along the critical isochore for T> T,

U\ . vat Tr@-d/2) ..
CV:(”a_T)V“ G @-z k=0

1
x(—a— 2 Re(LjA,d/Z-i)) , 2<d<4
aT i=1 14

~(v/3mat=0 (5 L Re(L,d,Ind)) , d=4
v

oT 5
and (6)
=~ [v,/2(2m)] ( %) (% ,Z; Re(L,AJ)) ;
d>4

when the residue L; is essentially constant.

From |A,(T,p)| ~ (T -~ T,)*i as T — T, from above
one has that Re[L A%/ ¥ (T, p )]~ (T - T,)*4 with
w; = v,(d-2)=v(d - 2), where v=min{y;,...,v;}. [Re-
call that v=max{v,,..., v} | Since Cy~ (T - T,)"*, we
have from (6) that

a<1-p(d-2), 2<d=<4,

M

o <1-27, d>4.

The study of the behavior of C, along the critical
isochore and for T < T, is somewhat more complicated,
In the two-phase region the specific heat at constant
total volume is related to the properties of the system
in its liquid and gaseous phases separately® by

9 2
. c. %, T am) el (?_9_9)
CV(T)—xLCV+xGCV+pL3KIT (BT +PcKT aT ’
(8)

where x(v;) represents the mole fraction of the liquid
(gas). If a’>2(1-p) -7, then the first two positive
terms of (8) are the leading terms. Therefore, from
(6) and (8) we have that

a’'s1-7'(d-2), 2<d=<4,
and (9)

ol <1-2v, d> 4,

where 7' =min{v],..., v/}. (We suppose that V' =V} = Vg,
B=8; =8¢ and a’=aj=af)
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The similarity between (7) and (9) suggests that (9)
should be true even for the case when the Rushbrooke
inequality holds as an equality. One would not expect
the direction of the inequality (9) to reverse (with > re-
placing <) just when o’ =2(1 - 8) —y’, however, this
has not been shown rigorously,

In order to relate (7) and (9) to existing inequalities,
we suppose that v=v and v’ =v’, where v’
=max{v},..., vj}. Thatis, the finite number of simple
poles which characterize the first-order phase transi-
tion are such that 14,(T,p )~ (T - T)* and
AT, Peoen) | = (T — TP as t—~0for j=1,2,...,1.
(The number of poles for each approach to the critical
point, of course, need not be the same.) Therefore,
(7) and (9) become

as<sl-pd-2), 2<ds<4, (10)
asl-2v, d> 4,
and
12 ’ - <
a’'<1-v'(d-~2), 2<d<4, (11)
a'<1-20 d> 4.

Results (10) and (11) should be contrasted to the
Josephson inequalities* (2 - a)<wvd and (2 - a’) sv'd
respectively. The Josephson inequalities are consistent
with (10) and (11) for 2<d <4 only if v= % and v’ > 3.
Note, however, that whereas (10) and (11) are satisfied
by the classical values v=v'=4 and a =a’=0 for

2 <d <4, the Josephson inequalities fail for the classi-

cal theories for d < 4.

From (2), (11), the Rushbrooke inequality,® (2 - a’)
<28 +7y’, the Griffiths inequality,® (2- a’) <B(6+1),
and the Liberman ineqguality,® (6 - 1) <y’, for fluids
we have

1.10-y)_28+y

4+ = 2<d<4
7 ! 2 s
2 d v y'd (12)
B= 4, d>4,
and
(6-1) 2(1—7')(6—1)
s T 5¥1) <% 2<d<4,
(13)
1+ 6-1
( Y’ )<6+1> <1 d>4.
529 J. Math. Phys., Vol. 17, No. 4, April 1976

Results (12) and (13) should be compared to the
Buckingham—Gunton inequalities”® with n=0, (28+7v’)/
y'd <1 and 2 <d(6-1)/(6+1) respectively. Consistency
between the Buckingham—Gunton inequalities and those
of (12) and (13) for 2<d <4 demands y’ = 1. One should
point out, however, that the assumption of positivity

of the spin—spin correlation functions used in deriving
the Buckingham—Gunton inequalities—valid for Ising
ferromagnets—is certainly false for fluids.

If one supposes, as is usually done when obtaining
the fundamental Rushbrooke and Griffiths inequalities,
that @ = 0 and a’ = 0, one obtains from (1), (2), (10),
and (11) that y <2v<2/(d-2) and v’ <2y’ <2/(d ~ 2)
for 2<d s4. Therefore, if y=1 and ' =1, then for
d >4 we must have that y=9"'=1, e =ea’'=0, and v=v'
=1, Also, from (12) and (13), we obtain that for d = 4,
B8=1 and 6 <3, Therefore, the classical values for the
critical-point exponents may be realized for fluid sys-
tems with d = 4.

In closing it may be interesting to point out that
whereas the Fisher® inequality, ¥ < (2 -n)v, agrees
with our result (1) for n=0, the Buckingham—Gunton
inequalities with n =0 differ from our results (12) and
(13). Nevertheless, the Fisher and the Buckingham—
Gunton inequalities are derived under the same as-
sumptions, ® which can all be justified for Ising models
with ferromagnetic interactions. Also, it has been
shown recently® that if =0, then the results of the
Ornstein—Zernike theory of Ref. 2 for d> 2 still apply,
and hence also those presented in this note.
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L,-space techniques in potential scattering
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We consider potential scattering of structureless particles for potentials V(x) contained in certain L -Spaces.
In particular we study the compactness properties of K(1)= V' exp(— iHy)V'?, H, being the free
Hamiitonian. By interpreting K(z) = f&dt exp(izt)K(t), Imz> 0, as a Bochner integral, we find the
following property for the total cross section o, (w) (w is the energy variable): If VeL, (R3)NL, (R?),
3/2<p<2, then §3 dw[w 12g (@)]? is finite for some suitable wy>0and 2p/(2p—3)<g< .

1. INTRODUCTION

In the present work we study the properties of certain
operators which play a role in the quantum mechanical
scattering of structureless particles. In the past much
attention has been paid o the operator

K(z) =iV 2z = H) V2, (1.1)

especially with respect to its compactness and behavior
for large z (see Ref. 1 for a survey), Here denotes H,
=p? the free Hamiltonian and V(x) the potential, H=H,
+ V being the full Hamiltonian. Although the correspond-
ing time-dependent operator

K(t)= V"2 exp(- iHy) V* /2

ze(,

(1.2)

has been considered in the literature, ? not so much
seems to be known about its compactness properties.
Here we consider the latter in some detail (Sec. 3) and
also (Sec. 4) the implied properties for K(z), where
the latter is interpreted as a Bochner integral

fﬂwdt exp(izf)K(f), O<argz=<m,

K(z)= (1.3)

- fowdt exp(~ izt)K(~t), w<argz <27,

One result is that K(w), w real, is contained in some
L,-space of vector-valued (actually compact operator-
valued) functions under suitable conditions on V. In Sec.
5 it is shown how this leads to corresponding integra-
bility properties for the total cross section.

2. MATHEMATICAL PRELIMINARIES

In this section we establish our notation and discuss
a few background results to be used in the sequel.

We denote by L,(R"), or simply L,, the L,-space of
complex-valued functions on R", the underlying mea~
sure space being S, =, ¢ with S=R", 2= 5, the Borel
sets in R", and u Lebesgue measure. In the following
we shall also encounter L,-spaces of functions which
take their value in a complex Banach space X ; notation
L,(R", X)=L,(X). For reflexive X the dual of L,(X) is
LGO(*)y 1 <p < 003 p_l +f1-1 = 1' 8

In the present work all integrals will be of the
Lebesgue type and standard theorems such as those of
Fubini and Tonelli will be used without explicit mention.
Fourier transforms will play an important role. As is
well known the Fourier transform f = Ff, or more
explicitly

F(R) = (FA(R) = (2m™72 [ dx exp(ikx) f(x) (2.1)
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exists as an element of L (R"), pl +g'=1if 1<p<2
(but not necessarily if p >2). In this case F can be in-
terpreted as a bounded transformation from L, into L,,
its bound obeying

Fll, o< (2m) @202 1<p<e, pr+gi=1. (2.2
We denote the L,-norm of fe L,(R", X) by Iifl,;
Al =[ frndx | f) P12, 1<p<w,
(2.3)

(A1l «=es8 sup |f(x)].
*&ERT

I X=a, |fix)| denotes the absolute value of f(x), in the
Banach space case |f(x)! is the norm of f(x) e X. Let
fx) € Li(X). Then f(x) is (by definition) strongly mea~
sureable (i.e., its measurability is defined with re-
spect to the open sets in the norm topology of X).

Thus exp(ikx)f(x) is Bochner integrable*:® so that the
Fourier transform f(k) = Ff(x) exists. In the same way
as in the scalar-valued case one can prove:

Proposition 2.1: Let fe Ly(X). Then f(k) € Lo(X) is
strongly continuous in k, IIfll.<Iifi;, and (Riemann—
Lebesgue)

lim |f(®) | =

k=

(2.9

We also have

Proposition 2.2: Let X be a complex Hilbert space.
Then the Fourier transform constitutes a unitary map-
ping of the Hilbert space L,(X) onto itself,

The proof proceeds again along the same lines as in
the scalar-valued case, i.e., by considering sequences
of simple functions and their limits in L,(X).

Corollary 2.1: Let X be a complex Hilbert space.
Then the Fourier transform F defines a bounded linear
transformation from L,(X), 1<p <2, to L,(X), p™ +¢”*
=1, Its bound obeys (2. 2).

The proof is evident from an application of the Riesz—
Thorin convexity theorem for L,-spaces of vector-
valued functions (see Ref. 6.,pp. 536,537). Let x
=(X1, ..., %) € R" and let A€ R so that Ax=(\xy, ..., Ax,)
c R" and let, furthermore, f be a function from R" into
the Banach space X. We define the dilatation operator
D, through

(D) (%) = f(xx). (2.5)

Evidently Dy =1, D\D, =D,,, Dya=(D,)" for A#0, and
if g is scalar-valued, D, (fg) = (D, )(D\g). For fe L,(X),
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1<p <o, we have IDfll, = IX|™"/?IfI,, x#0, and this
relation also holds for p =« if we define |A["*/*=1 for
this case. Denoting the class of bounded operators on
a Banach space {/ by B(/) and by 1T, , the norm of a
bounded operator T from L,(X) into L,(X), we have

DyeB(L,(X)), DI, ,=|x|"?, x20,1<p <,

(2.6)
Pryoposition 2.3: D,, considered as an operator fune-
tion in L,(X), 1sp <=, is strongly continuous in each
A#0,

Proof: Let 2, #0 be real and let A range through the
interval [X;— A, Xy +A], disjunct from zero. Letf
e L,(X), 1<p<e, Then, for given € >0, there is an
foe L,(X), f, continuous and vanishing outside a hyper-
sphere with radius p=p(¢) about the origin in R", such
that IIf - fyll, < €. Now

1{Dy, - on)fn, < (D1l + WDy N IS = fyli, + 11Dy = on)fo“»
< 2¢A™? + (D, - Dy )y,

where A=min{{3 = Al, Ix,+Al}. Since
15 = D Molls = [ f 1 <o @ [Fo(00) = fo2g2) [P 72

and f,(¥) is uniformly continuous in the domain |x|
<p.max{ix=Al, Ix,+Al}, we can make the right-hand
side of this expression arbitrarily small by making
iA= 2,1 sufficiently small. Thus it follows that

liml{(Dy = Dy )fIl, = 0. =

X-AU
Before we proceed let us introduce some further nota-
tion. We will denote L,(R") =//. For an element f of //
we have the alternative expressions |f| and !Ifll, for its
norm, The class of bounded operators on a Banach space
X will be denoted by A(X). The various Carlemann
classes of compact operators on /4 will be denoted by
B,#)=85,, 1<p<«=, For Ach, its B,-norm is 1 41,
=tr[A*AP/2 for 1sp<w and 1A0.=|Al, the (supre-
mum) norm of A as a bounded operator on /. As is well
known 3, is a Banach space under the corresponding
Bp—norm. Examples are the trace class /3; and the
Schmidt class A,, the latter being a Hilbert space, 8.
is the uniformly closed subspace of all compact opera-

tors in B(H).

3. PROPERTIES OF K(z)

Theorvem 3.1: Let ¢, pc L,(R"), p= 2. Then K(t), de-
fined by

(KON (x) = (4mit)™ 2o (x) [ dy expli(x - y)?/(4t)]
XYW (), t#0, fe Ly(RY=H 3.1

exists as a bounded linear operator on L,(R") and is
strongly continuous in each ¢# 0. Its norm obeys the
estimate

K@) | < |amt | 2lpll,livll,, t#0. (3.2
Proof: For the existence and norm estimate see Ref.

6, Sec. 6. With F (F is essentially the Fourier trans-
form) defined by
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(FH() = (2m"2 [ dy expli(x - v)2/2]A(y) (3.3)

we have for ¢ >0 (the case ¢ <0 goes similarly)
K(t)f=(5)"/2¢D Fp W
Bf=@""%¢ IV EE ARV 1

and the continuity follows from the strong continuity of
D, (Proposition 2.3). »

Remark: 1t follows from Corollary 2.1 and the validity
of Proposition 2.3 for the general Banach space case
that Theorem 3.1 remains true with L,(R") replaced by
L,(R", X), X being a Hilbert space.

Lemma 3.1: Let, in Theorem 3.1, ¢, P L,(R"), re-
spectively L,(R™, 2<p<4. Then for {#0, K(t) is con-
tained in 3,(//), respectively 5,(*) and 1K(¢)1,
= lamt 1™ /2 1 ,lipil,, respectively DK(E)0, < 14mt]|=/?

X i@, iipi,, whereas 1K(t}0,, respectively 0K(¥)0, is
continuous in each ##0,

Pyoof: The first case is obvious, whereas in the sec-
ond case we have for {#0

DK() 04 = tr[K* (DK () P

= [4nt|2 [ dxy dxy dyy dy,| 6 (0) )90 9(x,) |2
X exp{ (i/20)[ (%, = X5)¥; = (xq = x,)y, ]}

= | dmt| 2. 2m)" [ dxy di, | 9(y) ply) |2

X | D ge 11 8(xy = x,) [2. (3.4)
Here ¢ is the Fourier transform of l¢ %, an element

of L5, 2/p+2/¢=1sothat |¢12c L, ,, (note that 1
<q/4<), Since iPl2cL,,, the convolution

(19125 1D g, 18) (%) = [ dxy | (x,) 12] @ (%, - %5)/(28) 17 is
contained in L,; »*=2p1 +4¢? _1=1-2p" (for con-
volution in L,-spaces see Ref. 6). Thus

[912-(J9|2% [Dgrya® | e L, st=2pt+91=1,

i.e., is contained in L;. Hence (3. 13) is finite, i.e.,
K(t) € B,#), t+#0, and

20 @2m)m 12,0 925 | D ge 1 @ 21,
<|4mt |2 2m) Il 1| 9121, oll | D e 1@ 1211, /4

<[ 4mt |2 (2m)"NYlIE 1D g0 1 D112 5

DK()0 < |ant

<[ amt ]2 @l 1D 1112 15 0 1o LFIE 1y 0 1Ml
<|amt |42 10118 1yl

The continuity of || K(#)|}, for ¢# 0 follows from the strong
continuity of D, and can easily be made explicit, for
instance, by starting from the expression (3. 4). =

Theorem 3.2: Let ¢, ¥ and K(t) be as defined before.
We distinguish the following cases:

(a) ¢, P € L(R",

Then for £# 0, K() cA() and is continuous in the strong
operator topology on A{/) in each ¢t#0, while

[K@ | <|ant[" "l lyll,, 0.
() ¢, ¥c L(R",

2sp <o,

2<p<4.
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Then for t#0, K(t) ¢ B,() and is continuous in the norm
topology of 5,(4) in each £+ 0, while

DK < |ant| ol lIpll,, ¢+#0.
(c) ¢, ¥ e L(R".

Then for t#0, K() € 8,(//) and is continuous in the norm
topology of 5,(*/) in each ¢# 0, while

VK(6)D, = |4nt |2 pll,lIpll,, £#0.

Proof: It remains to establish the continuity in cases
(b) and (c). We do so for case (¢), the other case goes
similarly. It follows from the uniform boundedness of
IK(f) 0, on each interval disjunct form zero and the fact
that K(f) is continuous in the strong operator topology
[part (a) of the theorem] that K(#) is continuous in the
weak topology on 5,. Now for t,~#,#0 we have weak-
By=lim, . K(t) =K(t)) and lim, ., 0K(t,)0,=1K({)0 .
Since A, is uniformly convex (see Ref. 7), it follows
(see Ref. 5 or Ref. 6) that K{(f,) converges to K(t)) in
the norm topology of £,. Consequently, K(f) is continu-
ous in ¢, with respect to the norm topology of /3. »

4. PROPERTIES OF X (z)

If, in part(a) of Theorem 3.2, ¢,ye L, 'L, , 2<p;
<pp <, then

Jmatl RO =(f1+ [TV at| K@ <= if py/n<r<py/n.

Since K(#) is strongly continuous and consequently
strongly measurable, the situation where »=1 leads to
the Bochner integrability of K(f)f, f€/. This case was
considered by Kato.? In view of part (b) of Theorem
3.2 we can make stronger statements if in addition
é,9eL,, 2<p<4, since then K(t)c/f,.

Theovem 4.1: (a) Let ¢, pc L, 'L, , 2<p <n<p,
<, Then for every fe/ exp(izH)K(f)f, 0<argz <7 and
exp(~ iz)K(- )f, m<argz <27 are Bochner integrable
over (0,=), The Bochner integral

fondt exp(izh)K(t)f, Osargzs<m,
(4. 1)

K(z)f = -
- fo dt exp(— iz8)K(~t), m<argz <2m,

defines an element Iz(z) €/ () with the properties:
1, lIE(z)l is uniformly bounded in z;

2. IZ(z) is analytic in the open upper and lower half
plane with respect to the uniform topology on BEHY.
3. limgpee - <K(2)f=0, Vfch.

(b) Let ¢, ¥ as in part (a) and let =3, Then
exp(izt)K(f), O0<argz <7, and exp(—izH)K(~1), 7<argz
< 27 are Bochner integrable on /3, over (0,=) and the
Bochner integral

Foy Tt 0<arge <,
Z)=

(4.2)
- fowdt exp(— izt)K(~t), m<argz<?2m,

defines an element KN(Z) /3, with the properties:

1. DI::’V(Z) I, is uniformly bounded in z;
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2. K(z) is analytic in the open upper half plane with
respect to the norm topology on £3,;

3. limygee -.Qﬂlz(z)ﬂ‘i:

{c) Let ¢, ¢ as in part (a) and let, moreover, p, < 4.
Then exp(izt)K(t), 0<argz <7 and exp(~izH)K(-1), 7
<argz <27 are Bochner integrable on 3 .. over (0, ©)
with respect to the uniform topology and (4.2) defines
a compact operator K(z) with the properties (1)—(3)
above with the B,-norm replaced by the operator (supre-
mum) norm,

Proof: Consider case (a) Property 1 will be evident,
whereas property 3 is clear from Proposition 2.1.
Since for fe# the operator K'(z)

B i fo “dtt exp(izt)K(t)f, Imz >0,
K'(2)f= (4.9

i fu “dtt exp(- izt)K(- 1)f, Imz <0

is well-defined, the analyticity in the strong operator
topology follows by showing that lim, ., |(z — 2} [K(2)f
- K(z)f]-K'(2)f1 =0, which is a routine matter. But
then this result also holds with respect to the uniform
topology on (/) (Ref. 4, Sec. 3.10).

The proof of part (b) goes similarly, As to part (c),
since p, < 4 we know that K(t) =3, (and hence =/5.) and
is continuous in the 5 ,-topology. Since the operator
norm is majorized by the 8,-norm it follows that K(t)
is continuous in the uniform topology on /5 . and the rest
of the proof will be evident. n

Remark: The theorem does not apply if n=1, 2 be-
cause of the conflicting requirements 2 < p, and p, <n.

Under the conditions of part (b) of Theorem 4.1 we
have for real w (x, is the characteristic function of the
set A):

K(w) = [~ dt exp(iwt) Xy, i) - K (1), (4.4)

and we can interprete the thus defined Fourier trans-
form as a bounded linear transformation from

L,(R,8,) into L ,(R,5,). Now if there is an 7, 1<v

<2, such that p,/n<¥<p,/n, then x4« (O)K()

e L.(R,8,), and if 3, were a Hilbert space, then Corol-
lary 2.1 states that K(w) € L{(R,5,), ¥* +s?=1. How-
ever, 84 is not a Hilbert space, and we have to follow

a more roundabout way to arrive at the above conclusion.
(We do not know whether Proposition 2.2 is valid for

the general Banach space case.)

Lemma 4.1: Let 1<7 <2 and let T(*) ¢ L,(R,5,). Then

S@) =(T*» T)(w)= [ dtT*(O)T(t +u) (4.5)

exists as an element of Ly(R,/,), s=2r"-1, and
USHg< HTNZ,

Proof: Since T(f) exists for almost every ¢ as an ele-
ment of 3,, the same is true for 7*(#) and the latter is
measurable with respect to the norm topology of B, along
with T(f). Tt follows that the function T*(1)T(t +u) of ¢
and u exists almost everywhere and is measurable with
respect to the norm topology of 5, (the product of two
elements of 3, defines an element of 53,).

Let {7, (0}~ L,(3,) be a sequence of simple functions
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converging towards T(f) in the norm topology of L,(8,).
We write

T, (¢} =Z)Ol{ Tthi(f),
i
where a; € €, TycB, with 0T,0,=1 and the E,’s are
a family of disjunct Borel sets with finite total measure.

If we consider a second simple function T, (¢) of the
sequence, the corresponding sets E’; will differ from
the E,, For fixed n, n’ we, nevertheless, can find a
new collection {F;} of disjunct Borel sets such that each
E, and E;{ can be written as a finite union of F;’s. Thus
we can write

T =2 o, Tixe, (0, Twlt) =§ @;Tixe (8),

where a;, a;c @, Ty, TicB,, 1T,0,=1T"0,=1,
and we have
R P
H

”Tn— T"t”r = [Z Ua,T, - a:T,' ; “(F‘)]l/‘r.
i
We define

S) =T*« T ()= [ dtTH()T,(t +u).

S,(u) obviously exists as an element of /3, since it con-
sists of a sum of products of elements of 4, and convolu-
tions of characteristic functions. Then [s™=27"1-1 and
Il . iy refers to the norm in L(R,A,)]

1S, = Sy lls=T* & T,= TH % Tl
SHTE* (T, = T s+ ITH = TX)Tulls.
Now:

IT¥ (T, - Tp)lis
= f du”Zv OI;TT(OUTJ - aJT )(XF‘ * Xr,)(u)”a]l /s

[ du{Z/ {0‘{{ Iy T “‘a}'Tf’ﬂ;(XF‘*XF])(u) }s]”s
=If du{(z b, ) = (0D, ~ a5 s, }sn“s
i
= ”(Z:/ la; lXF‘>*Zj/ te;T; - a;T;HQXFj”s

< ”Z I ay IXFi”"‘“Z Ua,T
i i

=T N NT, = Tolly,

and the other term in (4. 14) is estimated in the same
way. Hence

Is,=Spellg< T, +HT Wl T, - T,

i.e., {S,()} is a Cauchy sequence in Ly(3,) and it fol-
lows that its limit S{u) exists as an element of L (f3,).
An estimate, similar to the one abaove yields IIS,li¢

<|IT,lIZ, so that lISll; < [T, .

Theovem 4.3: Let 1sr<4/3, If T(t)< L,(,), then
T(w) = [ dt expliwt) T(t), w € R, exists as an element of
LBy, »*+ut=1, and 1T, < CITI, where C>0 only
depends on 7,

It
i~ a;Ti 0 xp Il
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Proof: Let {T,(!)} be as in the preceding proof. Then
T (o) =Z{}a{T, f dt expliwtixs (1)
is well defined, and we have
IT,~ Tl
= [ dw 0T (@) = T (w) Y
T4 (H Tolw) -
T (M3 2,

= [ do 1{TH(w) - T, ()} /204

= [ dwl{T#(w) = TH (@K T\w) -

Now

M, (@) ={T*(w) = T (N To(w) = T, (w)}

= [ duexp(iwu)(T¥ = TH) « (T, = T} ()

= fdu exp(iwu)M, . (u).

It follows from the preceding lemma with T replaced

by T,= T, and S by M, ., that M,.(u) € L(R,5,)

=2r1-1, and 1M, i< T, ~T,IZ Since, for 1<7

<4/3, s ranges between 1 and 2, we can apply Corollary

2 1, 8 being a Hilbert space. Thus we conclude that
M, (w) € L(R,B,), st+e¢?l=1 and M el < CENM il s,

where C >0 depends on v but not on n,n". Hence 1M, I,

<CUIT, = Tyi?, v=2(1-+7), and taking « =2v, so

that »! +u =1, we have

T, - T, ll5=1M,,. 11472 <[CONT, - T,.I2]* /2
or

1T, - T ll,< CIT, = Tpll,,

i.e., {T,(w)} is a Cauchy sequence in L,(3,) and conse-
quently converges to a limit T(w) e L,{8,). An estimate
along the lines, outlined above, shows that HT Ity
<CIT,n, and hence 1T, < CuITH,, B

Covollary 4.2: If Xy, (£} K{tY € L(R, By} for some 7
with 1 7 <4/3, then (4. 12) defines an element A{(w)
e LyR,[), v +st=1.

5. HIGH ENERGY BEHAVIOR OF CROSS SECTIONS

We consider the case of potential scattering in three
dimensions. Thus H=p%+ V(x) is the full Hamiltonian
acting in #/ = L*(R?). We suppose that Ve L,(R3)

N Lg/,(R?) and we define V*’2 through i V*/3(x)| = | V(x) /2
and argV?%(x) =% argV(x). Then V*/2c L,N L, and K(w)

is now as before with ¢ =y = V2 The scattermg ampli-
tude can be written as (k, initial, k2 final momentum)

f(kh kz):fa(kbkz +‘I’(k1: kz kf kz‘“’) 0, (5.1)
where the Born term is given by
falky, k) =~ 212 [ dx expli(k, - k) + x]V(x) (5.2)

and
@ (ky, Kp) = = (4m)

x (B(w)[i = K(w)]™ exp(ik, -x) V', exp(ik, - x) V1 /?).

(5.3)
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Here (-, +) denotes the inner product in/ and

exp(ik, - X) can be interpreted as a unitary multiplication
operator. The above representation exists for suffi-
ciently large w since 01K(w) 0, and hence |K(w)| tends
to zero for large w. For further details see, for in-
stance, Refs. 1 and 8. In fact there exists an w; such
that

| @iy, kp) | < (4M) T 0K (w) 14 | [ = K(w) 1[IVl

<(C/4m)BK(w)0, (5.4)

for w>wy;, C being a positive constant.

(5.4) reflects the well-known fact that f(k;, k,) tends
to the Born amplitude for large w. However, if in addi-
tion Ve L,, $<p<2, more can be said. Consider the
total cross section 0y,,(w). Since, according to the op-
tical theorem, 0o (w)=(47/w'’?) Im[f(k, k)] and since
fs(k, k) is real, we have for w > w,

W 20,0, (w) < € - 1K (w) D 4. (5.5)

Now we apply the results obtained in Sec. 4, in particu-
lar Corollary 4, 2. Thus we see that, for V as above,
R(w) e Lo(B,) with 4<2p/(2p - 3) <g <o, Thus if p=3,
K(w) e Lo(By), but if p =2, then K(w) € L,,(5,) for any
8> 0. For finite ¢ we then have

[0 dw o Pog(w) I < CUKNG < . (5.8

Q

Suppose that we know from other sources that oy, (w)

behaves like w™® for large w. Then it follows from (5. 6)
that we must have @ >3 +1/q. For V continuous outside
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the origin the above condition on V regulates its beha-
vior in the origin. Thus we find a connection between
the former and the high energy behavior of the total
cross section. This fits in with the intuitive idea (at
least for repulsive V) that the higher the energy the
more the shape of V close to the origin becomes im-
portant in a scattering process.
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We present some Gaunt-type formulas and several classes of multiplicity-free Wigner coefficients for the

noncanonical reduction O(5) O SU(2) X U(1).

1. INTRODUCTION

The five-dimensional quasispin formalism!~7 has been
developed for some time in nuclear theory in connec-
tion with the study of the nucleon pairing in shells. The
theory exploits the group O(5), and the problem of con-
structing the canonical basis and evaluating the matrix
elements of operators has been studied in the mathemat-
ically canonical reduction O(5) 20(4), 1+*~%:7 Although
this reduction presents no multiplicity problem, the
states of this basis have no definite isospin. For physi-
cal applications more important is the noncanonical re-
duction O(5) > SU(2)xU(1), in which SU(2) is the isospin
group, and the eigenvalue of the U(l) generator speci-
fies the number of nucleons in a shell. In practical ap-
plications of a group, its Wigner coefficients often play
an important role for coupling states and tensors and,
in connection with the Wigner-Eckart theorem, for
calculating matrix elements of physical quantities. The
physically important projected states in the noncanoni-
cal reduction are not orthogonal in general, but may be
expanded in terms of orthogonal states for which the
Wigner coefficient can be evaluated easily. However it
is an obvious advantage that they be available directly
in the basis of physical interest. Hecht® and Hemenger?2+®
have given a large number of coupling coefficients in the
reduction O(5) > SU(2) XU(1), concentrating their atten- |

2. GAUNT COEFFICIENTS

tion on the O(5) representation most needed for nuclear
applications. In each of their formulas one of the six
representation labels is arbitrary, while the other five
have low fixed values.

Recently the general O(5) Wigner coefficient was
evaluated in the canonical SU(2)xSU(2) basis by expand-
ing the O(5) van der Waerden invariant®; in the present
paper special cases of the same van der Waerden
invariant are used to derive O(5) Wigner coefficients in
the SU(2) xU(1) basis for six distinct classes of coupling
which involve no internal or external multiplicity. Non-
canonical bases, corresponding to the reduction O(5)
S SU(2)xU(1), has been studied by several authors?®-!?;
throughout the course of the work we use the polynomial
basis states given by Ahmed and Sharp.!! In Sec. 2 we
derive certain Gaunt coefficients, They arise when a
product of two states in the same variables is expanded
in O(5) states. Using the results obtained in Sec. 2, in
Sec. 3 we evaluate Wigner coefficients for the reduction
0{5)D SU(2) xU(1) for the following O(5)
cauplings:

1) (05 onlpso), (i) (0‘11§ 0q.; 0g,),
(i) (1gy; Ogys; 19y - ga), (iv) (1qy; g5 0gy ~ g5),

) (1gy; 0gy; 1g, ~q, - 1), (vi) (1g,; 1g,; Ogy — gy - 1).

In expanding the Q(5) van der Waerden invariant'® for the evaluation of Wigner coefficients it is necessary to
combine two O(5) states in the same variables arising from different factors of the invariant into a sum of states
in those variables; the Gaunt coefficients are defined as the coefficients in the sum. We now evaluate those Gaunt
coefficients which will be needed in the next section. The Gaunt coefficient

{ 20 p0 | p 0}
VU, V,U, | VU

P20
=2
v,U.M, v

is defined by

FX0 >
V!. UIMI

po >{p10 b0
vum/ WU, v,U,

u,0,
MM,

e

U
. 1)
JM

where p=p, +p,, V=V, +V,, M=M,+M,; the last factor in Eq. (1) is an SU(2) Clebsch—Gordan coefficient, The

states are given by Eq. (2) of Ref. 11.

The Gaunt coefficient is easily shown to be

(2)

{ 2O 01 p 0} :( (4p+ V+ 1)1 Gp - V+ D10, + 1)(2U, + 1)> 172
iU, v,U,| VU (%Px + V) !(%Px -~V (%Pz+ AL (%Pz = V!
Cip1tEVy ibe Ve ip Y
X %Pl - %Vl %Pz _%Vz 7;‘1-'7 - %V
U, U, U
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The last factor in Eq. (2) is a doubly stretched 9 ~j symbol' and contains one sum. The (0g) state, Eq. (3) of
Ref. 11, may be written

0g4q

vu U> = Nyyl7£ 47012 g@v-0) 12 4 ypwanted, (3a)
where
Nyp={Ulg+ U+ V+ DU (g+U-V+D1[3g - U+ V] U[3lg - U - WP F/2x[2U+ 1)1 (2g + DI ]2, (3b)

and “unwanted” refers to states belonging to irreducible representations (IR’s) lower than (0g). The normaliza-
tion (3b) is verified by taking the scalar product of {3a) with Eq. (3) of Ref. 11.

The Gaunt coefficient

{qu _ 0g, Oq}
VU

VIU].’VZUZ
Og, >:E Og >{0q1 . 0g, | 0 q} <U1Uz U @
VUMy/ < ivum/ o, v, v ol \mm,im/’

is defined by
where V=V, +V,, M=M, + M,. For the stretched case g =g, + ¢, (the only case we need), it turns out to be

0g,
V.UM,
{ 0g, . Oq,

VU, V,U,

04
VU

201UV (g + U+ V + 1)1 > /e
n

— {1 W, +U,-U) /2
}‘( D¥T ((2q+1)!!(ql+U1+V1+1)

x( (qrU-V+ U5 - U+ ]isg - U= V)](2q, + D! (2g, + D1 )‘”
(qo+ U+ Vot Wil{gy + Uy =V, + D (g, + U, - V,+ DI 3, - U, + V]! (5)

N ((2UJ+ DQRU + DU, + U, -U-DNNU+U, -U, - (U+U,-U, - 1)!'! > 1/2
[%(t]g - Uz+ Vz)]!rir(41 - U1 - Vl)] ![%(Ch - U2 - Vz)]'—[ir(rh + Uz - U)]!

X{[3(U+ U, = U [BU+ U, — UDN U, + U, + U+ 1)1 E2,

Eq. (5) is deduced by putting M, =U,, M,= - U, in Eq. (4) and taking the scalar product with |,% vy, use Eq.
(3) for the states on the right-hand side of the scalar product (n = ¢ for M= - U), and Eq. (3) of Ref. 11 with
the replacement Eq. (4) of Ref. 11 for the state on the left.

Finally we need the Gaunt coefficients of 14 states in the product of a (10) state and a (Oqg) state; they are
just reduced Clebsch—Gordan coefficients and are found by putting p =1 in Eq. (10) of Ref. 11 and normalizing

{ 100g¢g }z(qi(U+%)i'V+% )1/2 (6)

L +
33 VU 2q+3
The primed and unprimed = signs.in (6) are to be chosen independently of each other.

r A= 0B, - B0, + 7,8, - 5,7,. (7o)

1 q
Vi Uz d

3. WIGNER COEFFICIENTS

A. Reduced Wigner coefficients of the form ijk are a cyclic permutation of 123: The expansion may

be achieved by first substituting

b0 0 ps0 a0 2.0
VU, VU, VU, Aa{i:ai! E i i > (~ 1)a4/2-N1.,
- WiTi -N; /& (8)

Wi TiN;

W, TN,
are found by expanding the normalized van der Waerden

invariant

Sy=V6[a,la,! ay! (a, + ay + a, + 3)1 1/ 24 ARAT
= 2 plo > on > pBO >
VUM VUM, /1| VUM, /2| VUM, /3
U,U,U, pi0 . b0 R bs0
V,U, V,U, V,U,

MMM, (72)

Here a, = 3(p,+ p, - p;) and, from Ref, 9,

636 J. Math. Phys., Vol. 17, No. 4, April 1876

and then combining the two factors in each of the 1,2,3
variables with the help of Eq. (1). The final result is

P70 p0  ps0 :(Gal!@} a,! U, + 12U, +1)Q2U, + 1))1/2
ViU, V,U, V,U, {ay+a,+ ag+ 3)!
x 2

WT,T,T3

{as 0. o 0
AWV, T, —W-V, T,

(_ 1)(01'(12*113) /2-}7‘147‘24\T3 {UIUZUS }
T,T.T,

0 }
Vl Ul
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a 0, a O
g

b2 0}
W T, V,-W Ty |V, U,

Da 0}
v, U
The right-hand side of Eq. (9) contains eight sums. In

Appendix B an alternative treatment is given, leading to
a formula with just six sums.

a, 0

9

a, 0
X .
{W+ Vo T, -W T,

In the stretched case p,=p, + p,, Eq. (9) simplifies
enormously:

J Y 'Pz 0 'Pl +p, O = (= 1)(or*2) /2-u3(6p!!p21 (2U3 + 1))l 2

V.U, VU, Vs U (bu+ by + 3!
{ pr 0, p, O p1+p20}
Vv, v, -V, U, Vs U, (10)

B. The reduced Wigner coefficient
0gq, 0q, 0gs
VI Ul V2U2 VS US

is found by making an expansion similar to (7a) of the
van der Waerden invariant

S, = N PB1B2Bl (112}
where, from Ref. 9.

by=zlg; +q,-q,) (11b)

By=M2 =8 = §my - 0,8, - 6, (11c)

(n of Ref. 9 is the negative of our 7). The projection
operator P is an instruction to retain only the part
which is stretched in all IR labels {in accordance with
11b); the normalization constant is

/2

1
v _(6(2b1+2b2+1)!!(2b2+2b3+ 1)!!(2b3+2b1+1)!!)
NUTN T, 15,10, (20, + DI (2b, + 1)1 1 (26, + 1)1

X[(By+ b+ by + 2)1 (25, + 2b, + 25, + 311 ]H/2 (11d)
The expansion of S;; is achieved by substituting
~1 0 .
pBli—pt 5 | © bi> b >(_ 1),
NN WTNGS G | =W T, =N,
{12)

and combining the states with the help of Eq. (5). The
result is

0 ;.0 g, 0 g,
V, GV, U,V Uy

=Ny by 18,10, [(2U + 12U, + 1)U, + 1) /2

uu,u,
X(_l)(q1+42+43)/2 { 1 Y2 3}
wr r,7, \Ty T, T,
{ 0 b, 0 b, |0 q,
x :
WV, T, ~W-V; T,|V,U,
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% 06, 0 bs 0 43}
WT, V, - WT, v,U,

(13)

quH 0 b, 0 b
v, U, ) \w+v,1, - wr,

The right-hand side of (13) contains five sums. The
stretched case ¢, =g¢, + ¢, involves no sums, i.e.,

0 (11.0 g 0 q,%q,
V.UV, UV, U,

Bg,1q,! QU+ 1) )1/2
(ql +g,+ 2)! (qu +2g,+ 3)

=(- 1)“1"“2(

0 g,%g,
Vv, U,

[0 @ 0 g

-V, U, -V, U, (14)

C. The Wigner coefficient
1 ¢, 0 ¢, g +gq,
Vl Ul VZ U2 VB U3
is found by expanding the invariant
Sii= V3[2q, g, (g, + g, + 3N Y/ 2PBBA,. (15)

PB!B;2 is expanded with the help of (14), A4, with the
help of (8), and the factors are combined with the help
of (8). The result is

1 g0 q, 1 q1+¢q,

Vl Ul VZ UZ V3 US

:{_1)113-1/2( 320, + 1)U, + 1) )uz
2g,1 ¢t (g, + g+ 3!
Z VoW 1/2{7'1 Ul % }
> - -
s (DT RTH1E v,
{ 0 q. 0 g5 O ql+q2}
X 3
SV - WT, =V, U, V- W T,
{ 1o 0 a1 ¢
X ;
-WrWEV TV Ul}
X{lo 0 g+ 1 611+q2}
ERw n v h (16)

Here T,=U,+%, whichever has the same parity as ¢,
-V, - W, and T,=U,+ 3, whichever has the same parity
as g, +q,— Vy+ W. The only sum in (16) is the trivial
one over W which takes the two values £ 3.

D. The coefficient

Vgt ¢, 0 q.%q
Wov,U,v, U,

is found by expanding

SIV: Vﬁ[qul qs! (41 +yg, + 2)! (2q1 +2¢,+ 3)]-”2}73213;1.2‘43-
1D

The result is
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1 1.1 ¢ 0 ¢, +¢g,
Vl Ul VZ U2 VS U3

+U1-1 /2

=(- 1)"1"“2

(3«11 lg,1 (U, + DU, + 1)(2U, +1))w2
2(‘11+512+2)'(2q1+2q2+ 3)

T, 10,
XZ(—I)TI{ }
W U, U, 3
{ 0 g, O G210 g, tq,
W-V, T, -W-V, T,|V, U,

1%}{10. 0 7111 ¢
v, U0, ) \Wwiv,-wr v, U,
Here T,=U,+3, whichever has the same parity as ¢,
- W+V,, and T,=U,++, whichever has the same parity

as ¢g,+ V,+ W. The only sum in (18} is over W which
takes the values +3.

1 0 0
X 1‘
-WE WV, T,

E. The coefficient
1 9.0 ¢ 1a1+q, -1
Vl Ul V2 U2 V3 U'3

is found in the expansion of
Sy=V3[2q, (g, - 1)! (g, +q, + 2)!
X {(2g,+ 3)T/2PB2 ' BUC,. (19)
C, is the elementary scalar
Co= M (tgBy — Byty + 83y — 58) + V21,(B36, = 6,8,)
+V26,(87, = ¥ By) + V2E (8, — B,0,) +

FV28,(v0 — ay7,)
0 1> 1 0>
1|V, S My /2\ V3 My /s

10
3 S 3 100110

= \/—'
45 2 Vy %]\41
M, M, M, V12V28V’ ’

Vi Vo,

(20)

where S=1- | Vz\ , and the reduced Wigner coefficients
have the values

100 1:10:i_ﬁ_ 10;01:10> 730
5 01 =¥ .

+3 5710 £33
(1)

Combining the factors in (19) with the help of the Gaunt
coefficients in Eqs. (5) and (6) leads to the desired
result, i.e.,

1g,.0 g1 ¢,+v¢,-1
ViU vV, U, Vy Uy

3 (120q1!(q2—-1)!(2U1+ 1)U, + 1)(2U, + 1) )1/2
- (g, + g2+ 2)1(2¢;+3)

X(=1)a*at 25 (2

YZT2

T,+ 1)1/
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X{ 0 q 0 -1 0 q1+q2—1}
Y-V, T, ~Y-2-V, T, |V,~Z T,
{10. 0 g1 ql}
X b
Y3V, -YT,|V, U,
{ 0 1 §; q,-1{ 0 g,
X 3
~Y-ZSY+Z+V, VZUZ}
{1 0 o G1+g.-1{1 g, +g,-1
X L]
Z3V,~-Z T, Vs 7, }
{10 0 11 0}
XYy oL
Y:-Y-ZSZ3%
T1T2T3?
x{3 S 3 oo, (22)
U, U, g

In the sum in (22) the dummies Y and Z take indepen-
dently the values 3. When Y=2, S=0 and T,= U,;
when Y= -2, S=1 and T, takes the values U,+1. Also
T,=U,+3, whichever has the parity of ¢, - V,+7Y, and
T,=U,+3, whichever has the parity of ¢, + ¢, - V,+ Z
+1.

F. Finally the coefficient
Vg1 ¢, 04g,%g,+1
vy Ul’V2 UZ,V3 U,
is found by expanding the invariant

Sy1=V3[2¢,1 ¢, (g, + g, + 31 (2, + 24, + 5)V/2PB2BYC,,.
(23)
C, is just the invariant Eq. (20) with the states
relabelled 1—2 =3 — 1. The result is
1 g, 1g, 0 gy,+g,+1
v, U, VUV, U,
(1zoq1 g,! (2U, + 12U, + 1)(2U, +1>>
(ql +g,+ 3N (2(11 + 2q2+ 5)

X(= 1)y 25 (2T,+1)/2
I’ZT‘3

{0 g 0 %

0 (11+(12}
X b
Y-v, 17,2-V, T,

Y+Z+V, T

3

1(11}{10 0 CI21‘12}
Aoy tziv,-z1,lv, U,
41+‘Z2+1}
VS U:!

X

YLV, -

41+ 4,

0
X
{ ZSY+Z+V T,

X

i

10 0110}§T1T2T3{
_y-zsvh

zZx
2

S5 3 S 7.
loo o)
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In Eq. (24) ¥ and Z independently take the values & 5.
When Y=2, S=0and T,=U,; when Y=-Z, S=1and T,
takes the values U,+1. Also T,=U, +3, whichever has
the parity of ¢, - V, + ¥, and T,= U,+%, whichever has
the parity of ¢, -V, + Z.

The internal sums in Eqs. (16), (18), (22), and (24)
are trivial in the sense that they contain at most six
terms. They could be done by hand in each case but this
would entail a proliferation of formulas, for the details
depend on the relative parities of the labels,

The classes of the O(5) D> SU(2) XU(1) Wigner co-
efficients we have evaluated do not exhaust all multiplic-
ity-free cases; other examples are the O(5) couplings
n+mO0:n+m0;0n), (n+ml;n+tm0;1n), (0n+tm;
On+tm:;2rn0), An+tm lu+tm 2n0), (I n+m; 1 ntm;
2n+10), (0 n+m; 1 n+m; 2rn+1 0). The classes we
have calculated include all those involving only trivial
internal summations.

4. CONCLUSION

The method of van der Waerden invariants is a power-
ful technique for calculating coupling coefficients of low
order compact groups in any basis. We are planning to
evaluate the general O(5)> SU(2) XU(1) Wigner
coefficient; the relatively simple coefficients found in
this paper will be needed in expressing the general
formula.
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APPENDIX A
The O(5)> SU(2) xU(1) Clebsch—Gordan coefficient

may be defined by
> - b q1 be 42
vuM
Vy, Uy M/ 12 ViU, M, 1|V, U, M,/
<U1 U, U><p1 q1 Ds Gz | D3 Q3>
X 5
My M, || VU, V, U, |V, Uy

The state on the left is a composite state formed from
products of the states labeled 1 and 2.

<D1 . P2 42| b3 s
Vo UV, UV, Uy

APPENDIX B

Ps g3

(25)

is the reduced Clebsch—Gordan coefficient which we
wish to relate to the reduced Wigner coefficient. All
states are normalized and we suppose the IR’s present
no internal labeling problem, i.e., p=0or 1 or else
q=0.

The normalized van der Waerden invariant may be
expanded in two ways:

S= 2 b1 5 y 22 4> bs 43
VO Y U, M, /1 |V, U, My /2 |V, Uy M, /5
U, U, Uy by 4y P2 42,05 45
M, M, M, V, U, V, U, V, U,
5 Ds ‘Is> Ds ‘I3>*
=€ 1/2 6
oy, v/ v, oy P (26)
where
Dy=£(ps+ g+ Dp + o+ 2)ps+ 2, + 3), (27}
and
Ds qs 3 Ds 43
_ _1)0,~M
Vo UM, ) T |~V vy - [P (28)

is the state conjugate to

Ds qs
Vi Uy My )

The phase ¢, is ¢, + U, for p,=0,1 and $p, for ¢,=0;

¢ is a phase factor which depends in an arbitrary way on
the IR labels. Substituting from (28), (25) in (26) and
equating coefficients yields the desired result;

b1 @ Dy G2) D3 G5 _
V.UV, Uyl -V, U,/

XD§/2(2U3 + 1) B (2 1)Uy ey,

b 4 P2 (12‘1)3 qs
v, UV, Uzﬁvs U,

(29)

The phase factor ¢ may be defined as unity or may be
chosen to make a particular Clebsch—Gordan coefficient
positive, say the one with V,=3p,+q,, Us=13p,, Vy=3p,
+4qy, U1:%P1, Vo=Va=Vy, Up=po+qy -V,

An alternative derivation of the reduced Wigner coefficient

pr 0 pp 0 py O
Vl Ul VZ UZ VS U3

yields a formula somewhat simpler than Eq. (9) (six sums instead of eight).

Projecting the van der Waerden invariant S;, Eq. (7), onto a product of one-particle states gives

pl 0 .172 O .pS 0
V.U, V, U, V, U,
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= (= DU 02320, +1) (U, + 1) (U, + DP/2 (U, Uy, Uy (U, Up, U (U, U, Us) | (U, U, U,

b4

(30a)
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where (U1 U,U,), ete., are SU(2) van der Waerden invariants, The subscript ¢ refers to isospin states which are
Wigner monomials in the V=1 variables a6; b denotes an isospin state in the V=~ % variables ¥8. Numerically,

Ua:%p_*—%V! Ub:%p'%v- (30b)
Expanding S, leads to

PO 20 20 Y = (L 1)Ut (60, ay ! (20, + 1) (20, + 1) (20, + 1)J/2
Vl Ul VZ UE V3 U3

X[(ay + ay+ag+3)1 /225 (U101, U,)(U,, Uy, U, XU, Uy Us) |

X ‘(}5")%.3!’(}5”1 —-%x)%,&z(ulb ~ Upy + 3%)g, 15{Ugp = %x)%,la(ula = Ugpt %x)!a,Zb(UZa = 3% 2L (x + Wy —x+ 1 J/2

x[(2U,, - 2U,, + x + 1)(2Us, - x + 1)(2U,, - 2Uy, +x+ 12U, ~x+ 1)]*/?, (31a)
where
J
hyo=2J J> >(-1>"“(2J+ 1)1z, (31p)
MM -M/ 2

The following evaluation of the scalar product on the right-hand side of (31a) is similar to the procedure used
in Ref. 15. If may be viewed as

(20, + D12 (x + D1(2U,, —x+ DI J/?

times the scalar produet of

[Usas Up) = (s UnyUs}| (3%, Uy ~ 32, U KU, U, U, (32a)
with
jA> ={(zq, - %x)zb.Sa(Ula = Uy + éx)ln.zb(vw = Uyt %x>3a,lb(U3b - %”sb,m ﬁ (U3, Urp Ui U5, B, UL)) . (32b)

The isospins ¥, Uy, - 5x, U,, on the right side of {32a) are in the variables labelled 3b, 15, 2a respectively.
| A) is a state in which the isospins 3x, U,, - 3%, Uy, U; are coupled to give a total isospin of U,,. 1U,,,U,) is a

complete set of such states with 3x, U,, - zx coupled to U, and U,, U, coupled to U,. Hence we can expand | 4)
in [0,,,U,), i.e.,

&)= 20 |Uy, Uy (2U,+ 1) (2U,, + 1) (U,,, U, | A). (33)
Usg' Uz

The sealar product (U, , Uz{A) is found by expanding (A} and [U%, U,) in products of the “one-particle states,”

i.e.,
Upy — %x> U1> 03\ <U2b
My, 1w ML/ My s g\,

b

1
3 >
Mﬂb 3p

and equating coefficients. The final result is

0.0 . p,0  ps0 _( 6a,! a1 a;! (20U, +1)2U, + 1)U, + 1) )1/2
v U’V U,V U - (a1+az+[13+3)!(U1+U2+U3)!(U2+U3-U1)!
1 1 2 2 3 3

x (ivw VU, = Vo) (3, = U (3p, + Uy + DT, + Uy ~ U)) ) M
(U, + U, + Uy + 1)1

Usa U3b US Ula Ulb Ul

-M-vt+ixv-3x M Uy, = Up+ M3 u—3x5 =Usy~u+3x Uy =M

X Z (= 1)Ua*Uyy*Ung*Usy turv-tt
Maevx

/2
o Wia = Uyt Uy + M+ 2 - 5x)1 2 (U + Uy = Usy = M=+ 501 (U + Uy, + 24 ~ 301 (U, + Uy — M) )’
(U = Us, ~u+ 32001 (UI—UQ«PM)E(U%)ry—%x)!([&—M}!

X[(Uyy = M = v+ 3 (Uy, + M+ v = 51 (Ugy ~ v + 2201 (Us + M T/ ? [x1(20,, - 20!
X(Uyy = Upy + s+ 30V (3ay +u+ v+ M N (3ay =1 =0 =MW (U, = Upy = Uy + Uy = M ~u — v+ )]

XUO + Uy, = Uy = Uy +u+ v+ MU, —v - 33! (34)
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We study the stationary neutron transport equation (in its integral form) in plane and spherical symmetry.
The investigation is carried out in both L, and C spaces, by means of standard methods of functional
analysis. The equivalence between the eigenvalue problems in the two spaces is proved, and the space C
seems often to be more appropriate than L, for investigating the main properties of the eigenfunctions.
Resuits of functional analysis are applied in establishing some properties of the eigenvalues and the
eigenfunctions. Moreover, the continuous dependence of neutron flux on optical and spatial parameters is

shown.

1. INTRODUCTION

In this paper, we are concerned with the stationary
neutron transport Boltzmann equation as applied to
homogeneous multiplying slabs and spheres. Whereas
nearly all previous work on the subject has been per-
formed in L,, our work is carried out in both the
Lebesgue space L, and the space C (with the sup norm),
QOur aim is to show that C is also natural space in
which to study the transport operator. In particular, we
investigate in detail the well-known fact that the study
of a sphere can be reduced to that of a slab. By investi-
gating directly the two original kernels for a slab and
for a sphere, all relevant physical properties of the
solution can be obtained in a rigorous way from the
Boltzmann equation, Finally, we are able to prove that
the neutron flux depends continuously on the optical
and spatial parameters,

2. PRELIMINARIES

Let us consider an infinite homogeneous multiplying
slab embedded in an infinite purely absorbing medium
or in the vacuum, so that no neutron may enter the
slab from outside. The material properties of the slab
are characterized by ¢ {c > 1), the average number of
secondary neutrons per collision, and by £ (£ > 0), the
total macroscopic cross section for all processes (fis-
sion, scattering, and absorption). Neutrons are sup-
posed monoenergetic and the processes are taken to be
spherically symmetric in the laboratory system.

Now, let 2a (o > 0) be the optical thickness (T times
the geometrical length) of the slab along the coordinate
axis x; moreover, let x =0 be the middle plane of the
slab. By making use of the optical unit o along the axis
x, then the slab extends merely from x=-1tox=1;
clearly, « is also the parameter characterizing both
the geometrical and material properties of the slab.

For the physical situation illustrated above and in ab-
sence of external sources, by putting A=1/c, the sta-
tionary neutron total flux ¢, in the slab must satisfy the
linear integral Boltzmann equation!

Ao, (x):f_i Ty (x, x") &g (x") dx’, ¢))
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where
T (6, x") = 3E(a|x - x"|) (2)
for any {x,x")= [-1,1]x[-1,1] and any & > 0 and where

E@= [ texp(-tu)dl, u>0, 3)
is the exponential integral, 2

If we consider now an homogeneous multiplying sphere
of optical radius a (o > 0), then the stationary neutron
total flux ¢, in the sphere must satisfy the linear inte-
gral equation (Ref. 1)

Mo () =30 [ [E@|x-x"])
~ E(a|x+x"D](x"/%) by (x") dx’, (4)

where x is the distance from the center. Since, as is
easily seen,

lim [E(a|x-x"]) = E(a|x +x")]x'/x =2 exp(— ax’),
x=0%

for any x’< (0,1], we rewrite Eq. (4) as follows:
N o () = [ U, G, x") B (") dx’, (5)
where
lalE(@|x—x']) - E(a|x +x' )] x'/x,

Uy(x,x") = 0<x=1l, O0sx’'<1 (6)

aexp(-ax’), x=0, 0<x'<1

for any « > 0. We shall study Egs. (1) and (5) by making
use of the operator valued functions T, and U, (& > 0),
whose kernels (using the same symbol for the operator
and for its kernel) are respectively T, (x,x’) and

Uy (x,x').

We now observe that if we substitute ¥,{x) = x¥, (x)
into Eq. (5) and extend the definition of ¥, by ¥,(x)
=x9,(~ x), we then obtain the integral equation govern-
ing the neutron distribution ¢;(x) in a slab of thickness
20/%., For this reason, the study of homogeneous
spheres with isotropic scattering is usually included
in that of a slab whose half-thickness is equal to the
radius of the sphere,
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3. SOME PROPERTIES OF 7, AND U,

We establish here some properties of 7, and U,
which are true for any a > 0. The first step is to choose
the spaces in which the operators T, and U, act.

By taking into account (2), it is easily seen that
f_: [T, (x, x)[2dx’ ("
is a continuous function of x= [~ 1,1] and that
f_: ‘Ta(y,x') - Ta(x,x')12dx’ -0 as |y—x[——00 8)

From (8) it follows at once that T, can act on the whole
of the space C[-1,1]; on the other hand, both (7) and
(8) imply that T, will be compact as an operator acting
in C[-1,1].? Moreover, (7) implies also that T, (x,x")
is a Fredholm kernel (that is, square integrable on
{-1,1]x[-1,1]) and hence, as is well known, T, can
act also on the whole of the space L,[-1,1] and it will
be compact in this space.

By recalling the definition of U, it is possible to
prove, by tedious calculations, that conditions analogous
to (7) and (8) are also true for the kernel U, (x,x’). Con-
sequently, U, can now be considered as an operator act-
ing in both the spaces C[0,1] and L,[0, 1] and which is
also compact in both these spaces,

Here Cla, b] (@< b) is the space of the real-valued
functions defined and continuous on [a, 5] with the usual
sup norm, and L,[a, b] is the Hilbert space of the real-
valued functions defined and square integrable (in the
Lebesgue sense) over [a, b] with the usual inner product
(f,8)=[; Flx) glx)dx, f,g< Lyla,b] and the L,~norm
FI=(r, A2

Let now T, act in L[~ 1,1] (we shall consider U,
later). Since the kernel T, (x,x) is real and symmetric,
the operator T, is symmetric; moreover, as is well
known, ! T, is also positive definite, It follows that T,
has a denumerable infinite set of positive eigenvalues
forming a sequence

Mla)zxn@yz ez (a)z.
converging to zero (but zero is not an eigenvalue) and
each eigenvalue is of finite multiplicity (Ref. 3). The
first eigenvalue is given by the formula

Mlo)=max(T,f,f), fe Lyl-1,1] )

At this point, we observe that T,, as an operator
acting in C[-1,1], has the same eigenvalues and
eigenfunctions as an operator acting in L,[- 1,1]. In-
deed, the eigenfunctions of T, as an operator in
L,[-1,1] must be continuous since 7, maps L,[-1,1]
into its subspace of bounded functions and this subspace
into that of continuous functions.® The vice-versa is
obvious. Analogous considerations are available for U,.

Since the kernel T, (x,x’) is also even, see (2), the
eigenfunctions of T, must have definite parity. Let now
H, and H, be the closed subspaces of L,[- 1, 1] having
as elements the functions which are respectively even
and odd (almost everywhere), Moreover, let S, be

543 J. Math. Phys., Vol. 17, No. 4, April 1976

the linear integral operator acting in H, whose kernel
is
So (v, 2") = [T (x, x") + T lx, = x)1/2

for any (x,x") e [-1,1]x[-1,1], and let A, be the linear
integral operator acting in H, whose kernel is

Ay, x) =T, (w, x") = T (xx, ~ x")1/2 (10)

for any (v,x")e [-1,1]x[-1,1]. As T,, the operators
S, and A, are compact, symmetric, positive definite;
unlike T, it is of no interest that S, and A, can act in
other spaces that are not H, and H, respectively.

We remark that the eigenvalue problem of T, in
L,[-1,1] is equivalent to the two eigenvalue problems
of S, in H, and of A, in H,.

Now, we establish the following theorem.

Theovem 1: (i) The operators A, and U, acting in
HyC Ly[-1,1] and in C[0, 1] or L,[0, 1], respectively,
have the same eigenvalues. (ii) The first eigenvalue of
U, is the second of T,,. (iii) The first two eigenvalues
of T, are simple.

Pyoof: (i) Let A(c) be an eigenvalue of A, correspond-
ing to the eigenfunction ¢,, that is

Ma) do ()= [} Agln, o) o (x) dx’. (11)

In the Appendix we show that the odd continuous function
¢, can be written as

¢ (x) :xaa(x), xe[-1,1], (12)

where ;~ba is an even continuous function. Let 3, be the
restriction of , to [0, 1]; then, by inserting (12) into
{11) and by taking into account definition (10}, it follows
that

Madxd, (x) = fol [T, e, 2"~ T, (x, = V) 59, (") dx’ (13)

and, hence, by substituting exponential integrals and by
recalling the definition of the kernel U,, we get Eg. (5).
Hence, M\(a) is an eigenvalue of U,. The converse is
true; indeed, let A(a) be an eigenvalue of U, as acting
in LZ[O, 1] corresponding to the eigenfunction Po. It
follows from definitions (6) and (2) that Eq. (13) is
satisfied, If ¥, is the even extension of ¥, to [-1,1],
then ¢, defined in (12) satisfies Eq. (11) and hence

Ma) is an eigenvalue of A, as acting in H .

(ii) Because U, and A, have the same eigenvalues,
we refer to Ref, 6 where the proof that the first eigen-
value of A, is the second one of T, is given in the more
general case of systems with reflectors.

(iii) See again Ref. 8.

Finally, we add the following remark. Since (@)
ig the largest eigenvalue of S, an eigenfunction of T,
corresponding to it (which is evenand continuous) must
be either positive or negative in [- 1,1], see Ref. 6.
Likewise, since A,(a) is the largest eigenvalue of 4,
an eigenfunction of T, corresponding to it (which is
0dd and continuous) must be either positive or negative
in (0,1}, Hence, from (12), (see also the Appendix),
it follows that an eigenfunction of U, corresponding to
A, (a) (which is continuous) must be either positive or
negative in [0, 1].
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In the sequel, we also need this theorem.
Theovem 2: Let ac (0, + «). Then

(i) as operators acting respectively in C[-1,1] and
C[0,1], T, and U, depend continuously on @, in the
uniform topology;

(ii) moreover, T, depends continuously on « also as
an operator acting in L,[-1,1];

(iii) Ty - T, is a positive definite operator in L,[- 1, 1]
if 8>,

Proof: (i) Let us consider the operator T,. If we
show that

M,,= sup f_}‘TB(x,x')—Ta(x,x’)ldx'—-O as B—a,
x<[=1,1]
(14)
then clearly T, depends continuously on a as an opera-
tor acting in C[- 1, 1). It is sufficient to prove (14),

The exponential integral is a strictly decreasing func-
tion in (0, + =) and

f_: To(x,x")dx’ < [2° T, (x,x")dx’ =1

for any x< {~ 1,1] and any ¢ > 0. By taking > a and
recalling (2), we get the inequalities

S Tole, ) = Tolo, x7) |dx’
s(-a/p) f_i Talo, x)dx' + f_: (T,(x, x"
— (a/B) Tylx, x") ] dx’
<2|g-al/B,

which are true for any x< {- 1,1}, This is also true
for B < «; therefore, (14) is proved.

Let us consider the operator U,. By recalling the
definition of the kernel of U, and by making use of the
series expansion of the exponential integral, we can
see that

sup foikUS(x,x’)— U, (x,x")|dx’ =0 as B—~a
1

*Z 0,

so that U, depends continuously on a as an operator
acting in C[0,1].

(i1) Since the kernel T, (x, x’) is symmetric, again
from (14) we can deduce that T, depends continuously
on a also as an operator acting in L,[-1,1]. Indeed,
let f= Ly[-1,1], lIfll=1; we write

[(Ts = To) 710 |2
<UL 1Tyl 2 = Tole, x0 76 | dx' P
< f_i | Tolx, x7) = Tolx, x7) | dx’
x f_: | Tolx, x7) = To(x, /)| | Flx") | 2dx’
< Myp f_} | To(x, ") = Tolx, x| | Flx")|2dx’, (15)

where we have used the Schwarz inequality and (14).

Now, by integrating (15) over [-1,1], from the well-
known definition of the norm of an operator and also
from (14), we get that

H TB -7, H < Mype

Hence the result follows at once.
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(iii) The proof of (iii), with slight modifications, is
the same as that given in Ref. 4. Clearly, Tg,-T, is
also a compact, symmetric operator.

We can now give a theorem that summarizes some
properties of the eigenvalues of T,.

Theorem 3: Let a < (0, +«), Then

(i) for any n =1 the eigenvalues A {a) of T, (and hence
those of U,) are continuous and strictly increasing func-
tions of a;

(ii) for any > 1 and any @ > 0 we have 0 < (o) < 1;
moreover, lim,_ g+X,{e)=0 for any » = 1;

(iii) if =1, 2 we have lim,_,, 2, (a)=1.

Proof: The proof of (i) follows easily from Theorem
2, see again Ref, 4,

As far as case (ii) is concerned, since the eigenfunc-
tions of T, are bounded, we have

by < 1 ’ r_ 1 ’ ’
0< 1(a)<x€S[l.14p’ﬂ Ji Tate, 2 ax' = [ To(0,x") dx’ <1,

for any a > 0, On the other hand, from the well-known
inequality

M) < (3 [ 1T.6, 2 2 dxda)V/?
it follows at once that A{(a) — 0 as a — 0" because

Ji L3 Talr 2 [Paxdx’ < [Tax (27 Talx, ') [ ax’

=20 log2,

as is easily seen by making use of (3). The proof of (ii)
is complete.

Clearly, to prove (iii), it is sufficient to consider the
case n=2. For this, let f(x) =V3/2 x, x< [-1,1]; then
feH, Ifll=1, From (9) and from Theorem 1, we get

(Aafnf) = A'z(a) < 1, a > 0,

where we have used also (ii). Now, a simple calculation
shows that

(A,f, ) =1-fa - (fa?) exp(- 2a) + (§a®)[1 - exp(- 2a)],

and hence the result follows at once.

4. THE SOLUTION OF THE ORIGINAL PROBLEM

We are now in a position to prove some properties
of the original Eqgs. (1) and (5). These properties are
summarized in the following theorem.

Theorem 4: (i) For any « > 0 there is one and only
one neutron flux ¢, c C[-1, 1] in the slab such that
#,) >0 for any x= [~ 1,1], ll¢,ll=1, ¢, being also
an even function in [- 1,1], and there is one and only
one neutron flux ¢, = C[0, 1] in the sphere such that
¥e (x) > 0 for any x< [0,1], [|4,ll=1.

(ii) Let cg(a) and c4(o) be respectively the critical
values in the slab (of half-thickness @) and in the sphere
(of radius @), a>0. Then cs{a) and ¢ 4{&) are continu-
ous and strictly decreasing functions in (0, + «) and for
any a > 0 we have c4(a) > cg(a) > 1. Moreover,

limc,(a)=+w, lime;(a)=1, {=A,S.
a- gt [
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(1ii) If 8 —~a, then ||y — P Il —0 and [[¢; - ¥, Il =0 so
that both the neutron fluxes ¢, (x) and ¥,(x) are contin-
wous functions respectively in (0, + ©)x[~1,1] and in
(0, + =) x[0, 1],

Proof: Points (i) and (ii) follow at once from
Theorems 1 and 3 and from the remark which follows
Theorems 1,

To prove (iii), we consider only the neutron flux ¢,
in the slab because the proof for the neutron flux ¥,
in the sphere is the same.

Let {an} be a sequence converging to «, and let {cp.,n}
be the corresponding sequence of positive normalized
eigenfunctions, Since T, is compact as an operator act-
ing in C[- 1, 1], the sequence {T',¢,, } contains a subse-
quence {Tod,, } converging to an element of C[- 1, 1],
which we writé A 1(@)¢. From the equality

M(@[6., - Bl=M(@ X (a) Tu, Ga, -~ Tuba,

+ Tu(pa"k - )\1(01)¢

and since ) (a) and T, depend continuously on ¢, we
see that ¢, goes to ¢. The boundedness of T, implies
that Toda, = «® and so T, =x,(a) . Since Xt(a) is
simple, then =, and Do, ~¢a Only one limit
point for {T, ¢, } exists, it is A(c) ¢o. Hence,

T ¢a Xi(a) ¢a and

Teps ~N(a)p, as F—a.

Thus, the theorem is proved,

We finally observe that all the statements of the
theorem have an obvious physical meaning. For exam-
ple, we have c (&) > cs{a) because the loss of neutrons
by leakage is smaller in the slab than in the sphere.
Also the fact that the neutron distributions are contin-
uous functions of (@, x) has an interesting physical
meaning, that is, for small variations of £ the neutron
distributions vary uniformly in all the domain of the
spatial coordinates,

APPENDiIX

In Sec. 3 we need the following result. If ¢, is an odd
continuous eigenfunction, defined by Eq. (11), then

b ) =xf(x), x=[-1,1]
where f,(x) is an even continuous function.

We begin by recalling that the kernel A, (x, x’) is
odd as function of x’. If ¢, satisfies Eq. (11), then
its restriction to [0,1], &,, satisfies

M) a0 =4a [* [E(a|x-x'])
- E(a|x+x" D] 3 (x") dx’. (16)
A simple computation shows that

lim[¢, (x)/x?]=0, 0<p<1.
x~ 0%

Hence, we can write ¢,(x)=x* g, (x), x< [0,1], where
g is a continuous function on [0, 1] [here, we put
2,(0)=0 for continuity].
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Now, by introducing this factorization in the rhs of
(16), we can prove that lim,. ;+[¢,(x)/x] does exist and
it is finite. Actually,

lim 3/1 [E(a|x-x'|) - E(@]|x+x'])] ’—;fga(x’)dx'

x- 0%

o f emta

,1_, ga (x)dx’.

Indeed,
%fl([E((YIX—;\(’D—E(Q{|x+xl’)]:x_lf_23*xp’(]:”_ai"))
0 po .
xgu(X')dx’l
Ma f"[E(“|"‘x")—3(a|x+x’|)1 x'
¢ x
- 2exp(- ax’)| x"* 1 ax’

because |g,(x’)I <M. If $<p<1, by Schwarz inequality,

this is bounded by
Ma f‘
ep-1J,

- 2 exp(~ ax’)

[E(a|x-x"|)- E(a|x+x'])] %’

(17

We can say that (17) approaches zero if we prove that

1}1(‘)1} f01 |[E(ax") - E(a|x+x')]x'/x

—exp(- ax) |2 dx’ =0 (18)
and
lim foi |[[E(a]x-x"|) - E(ax’)]x'/x
x= 0*

- exp(— ax’) |2 dx’' =0, (19)

The limit (18) follows from the fact that {x’/x}[E{ax’)
- E(a!x+x'1)] is dominated by exp(- ax’) for x< (0, 1]
and x’ = {0,1]. The integral in (19) can be split in two
integrals over [0, x] and (x,1]. Then, by some tedious
manipulations, we obtain (19).

By taking into account that lim,_ p+[ @, (x)/x] exists
and is finite, we can write

b (x)=xf,(x), xe[0,1],
where f, is a continuous funetion on [0, 1].

Finally, if we put f, (- x) =7, (x), we then extend ¢, to
[-1,1], obtaining an odd function ¢, =xf, that satisfies
Eq. (11),

*Wwork performed under contract C.N.R.
per la Ffsica Matematica).
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The equation of geodesic deviation is solved in the Schwarzschild geometry in a covariant manner. The
solution is exact for null geodesics, and is given as an integral equation otherwise. The solution is then used
to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need
to be known in order to find the Green’s function for wave equations. The method of null geodesic limits is
used to calculate higher order derivatives, and the results are applied to the scalar Green’s function in the

Schwarzschild geometry.

I. INTRODUCTION

In a previous paper, ! designated I in the following, a
new method of solution of the equation of geodesic devia-
tion was outlined for space—times in which the Riemann
tensor could be expressed in terms of simple tensors of
lower rank. The specific example of I was any con-
formally flat space—time. The solution was used to
evaluate covariant derivatives of two-point geometrical
quantities, following Synge, ? and the results were ap-
plied to find the Green’s function for the scalar wave
equation. A computational method, called null geodesic
limits in analogy with coincidence limits of Synge? and
DeWitt, ® was developed, which proved more useful than
brute force application of the solutions.

In this paper we treat the same topics for the
Schwarzschild geometry, in which the Riemann tensor
has a simple decomposition in terms of a tensor field
of lower rank. In Sec. II we write down the equation of
geodesic deviation and find its solution in a covariant
manner. The solution is exact for null geodesics and
gives an iterative series in the nonnull case. In Sec. III
the solution is used to evaluate second derivatives of
the world function and derivatives of the parallel propa-
gator. In Sec. IV the technique of null geodesic limits
is applied to finding higher order derivatives, and then
used to evaluate the d’Alembertian of A2, In Sec. V
this last calculation is applied to the scalar Green’s
function as an illustration, and the weak field limit of
the solution is exhibited.

II. GEODESIC DEVIATION
The Schwarzschild metric, in standard coordinates,
is given by*
dst=(1-2m/¥)dft ~ (1 -2m/P)Vdvri =¥ dt. (2.1)

The Riemann tensor, computed from (2.1) can be ex-
pressed in the form

R¥Y o5 = 0640, - 058 + 3(phps ~ pEPL)], (2.2)
where, in the coordinate system defined by {2. 1),

o =—-m/2% (2.3}
and

pi=pl=-pi=-pi=1. (2.4)

Although (2. 2) was obtained only in one coordinate
system, we can define (2. 2) to be valid in any other co-
ordinate system if we define ¢ to be a scalar and

ph to be a tensor.
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As an aside remark, we note that the assignment of
the tensor transformation properties to (2. 3) and (2. 4)
is not without some physical justification. First, ¢ de-
pends only on 7, which is determined by the surface
area (47#%) of a sphere of symmetry in any coordinate
system, and thus a scalar. Second, the relations (2. 4)
can be deduced from the spherically symmetric solu-
tions of the tensor algebraic equations

papy =0, px=0, pi>0. (2.5)

These equations remind one of the algebraic equations
encountered in the geometrization of the electromagnetic
field following Rainich,® Misner, and Wheeler.® In fact
if we consider the Reissner—Nordstrém solution with
a small charge ¢, and compute the energy momentum
tensor T*" of the electromagnetic field, 7 then p* is
given as

py=1im 2TY /(T TV, (2.6)
where in the limit € — 0, the Reissner—Nordstrém
solution becomes the Schwarzschild solution. Thus the
physical interpretation of p, is that of a normalized
energy-momentum tensor of a “ghost” electromagnetic
field arising from an infinitesimal charge added to the
Schwarzschild geometry.

Following the notation of I the equation of geodesic
deviation for the Riemann tensor (2.2) is

2y ~ o~ ~
?‘7}5‘ + SV UL U™ = UHUWV*) + 3 (VAU U - U U, V) =0,

(2.7}

where V* is the deviation vector, U* is the tangent
vector, and where we have defined the operation A* on
a vector A* by

A® =prae,
This operation has the properties that AR =A%,
A A% =A_A* and A B*=A,B% Asinl we wish to
solve (2.7) for V*(u) for end values V* () =0 and
V*(u,) = V"2, an arbitrary deviation vector. In the first
term of the first bracket in {2.7) the factor U, U van-
ishes if the fiducial geodesic is null, and that term can
be treated as a small perturbation if the fiducial geo-
desic is nearly null. In the second term of the first
bracket U, V* is known, as in I, by the integral of (2.7,

U V=l = u)/ ey =) 1 Uy V2. 2.9)

The covariant derivatives of p,, can be evaluated in

(2.8)
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the coordinate system (2. 1), although the final expres-
sions are valid generally. First we define the scalar
in the coordinate system (2. 1) by ¥ =1Iny so that ¢

=~ (m/2) exp(- 39). Then the covariant derivative of
Puy 1s found to be

pu,y;)t = d);u (gvx - pu).) + lp;v(gux _pul)"
This operation introduces a new vector, ¥,,, which has

the property that 5” =9¢,,. The covariant derivative of
¥,, 1s similarly found to be

Z/);u;u: - d);ulp;u -
where

M= - (m/2) exp(- 39) + 3 exp(- 29},

N=(3m/2) exp(— 3¥) - $ exp(- 2¥).

Note that (2.10) and (2. 11) are sufficient to evaluate any
higher covariant derivatives of p,, or ¥, that are de-
sired without introducing new vectors or tensors. This
follows from the fact that

M, ==-3,,(8M - N), N,,=-3$,8M+TN).

(2.10)

‘Mguu_Npuu’ (2. 11)

(2.12)

The closure property, illustrated by (2.10), (2.11),
and (2. 12) is needed in order to establish a trial solu-
tion of (2.7) with scalar coefficients.

Two integrals along the geodesic can be found direct-
ly from (2.10) and (2. 11). If we multiply (2.10) by
U*U*U*, we find that

(Ua - Ua) U%= 2h2 exp(" 2Z\D)> (20 13)

where % is a constant, In standard notation i = ¥*(d¢ /du)
when § =7/2, so that (2.13) is equivalent to the angular
momentum integral of motion. Also multiplying (2.11)

by U*U" leads to

WO, +U,) U1 = 2m exp(- 0)] + exp(20 ) (50 /5u)? = K?,

(2.14)
where K is a constant [equal to (1 - 2m/#)(d¢/du) in
standard notation] and where 5§/6u=y,,U*. (2.14) is
thus equivalent to the energy integral of motion.

The trial solution of {2.7) can now be written as
vt =Ag*,, Vo1 + BU® +Cp‘;g°‘32V“2 +DO* + Epiv
(2.15)
where A, B, C, D, and E are scalar functions of «
along the geodesic. The boundary conditions are
A =By=C,=D;=E;=0, Ay=1, B,=Cy=D,=E, =0,
where A, =Af{u,), etc. An algebraic relation among
the scalar coefficients follows directly from (2.9):

A= (u- )/ (uy ~ 141)] Um2 v+ BU, U
+CU, g%,V + DU, U+ E 5/0u=0. (2.16)

Substitution of (2.15) in (2.7), using (2. 10) and (2. 11),
leads to five coupled ordinary differential equations for
the scalar coefficients, found by requiring that coef-
ficients of like vectors in (2.7) separately vanish. From
the coefficients of the first and third vectors on the
right side of (2. 15) we find respectively the differential
equations

A" + oU UA +3¢U, U*C =0, (2.17)
C" + ¢UUC + 36T, U*A =0, (2.18)

547 J. Math. Phys., Vol. 17, No. 4, April 1976

where prime denotes differentiation with respect to u.
These equations are decoupled by defining g(u) =A +C
and 2{u)=A - C, so that g and 1 satisfy

g" +loW,u* +30,U%)]g=0, (2.19)
B + o (U U - 30, U0 ]n=0, (2. 20)

subject to the boundary conditions gy =hy=0, g,=h, =1,
(2. 19) and (2.20) are of the form of a Schrdinger’s
equation, and the bracket terms may be identified with
effective potentials. A major distinction is, however,
that the boundary conditions are inhomogeneous. Note
that from (2.13) each bracket is a known function of

¥, so that if one gives P@) [or #()] for the fiducial
geodesic, then the solutions of (2.19) and (2. 20) can be
explicitly found by numerical integration or other
techniques. For the case of null fiducial geodesics the
brackets in (2. 19) and (2. 20) are proportional to

exp(- 5¢) (or 1/7°). For null fiducial geodesics the
bracket in (2.19) is always negative, and that of {2, 20)
is always positive. Therefore the solution for g(u),
subject to the boundary conditions, is always well be-
haved; however there could exist end points such that
h(u) is zero at both end points so that k(x) could not
then be scaled to the value 1 at # =u,. Note, however,
that there is no singular behavior to either g() or h(x)
as ¥ approaches 2m.

For the case of null fiducial geodesics, we can find
one explicit solution of (2.19), namely

Lol = % 3% exp(2y) = [K* exp(2¢)

- 1% +2mh? exp(- P2 (2.21)
The other independent solution is then
Y du
u 2.22
& )/ 2w’ (2.22)

which can be expressed explicitly in terms of a deriva-
tive of an elliptic integral of the first kind with respect
to the parameter K?/h%. The desired solution is then the
linear combination of (2,21) and (2. 22) that satisfies
g=0and g,=1:

_ & f du / v du

§0="ctp o o Sy 26
If go(u) =0 between u; and u,, then one has to consider
g(u) in the two segments (u,, uy) and (u,, u,) separately.
A formal solution to (2,20) can be obtained by consid-
eration of elliptic functions of a complex argument,
However in practice it would probably be simpler to
numerically integrate both (2.19) and (2.20) in order
to find g() and %(x).

(2.23)

From (2.17)—(2. 20) we have explicit solutions for
the scalar coefficients A and C, and these terms may
be treated as known quantities in the remaining three
differential equations. The decoupling of the differential
equations resulting from the coefficients of the second,
fourth, and fifth vectors of (2, 15) in (2. 7) gives rise
to the differential equation for E,

E" +3¢U UPE=

><2[1/(u2—u1)—A’—C’]Uana2+O(UdU“), (2.24)
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which (with the boundary conditions E; = E; = 0) deter-
mines E. Then D is determined, to order (U,U%)?, from
(2.16), which automatically satisfies the boundary con-
ditions Dy =D,=0, Finally B is found tc satisfy the
differential equation

B?=—-D" - (4¢E) + ¢p(A + C)[Uaz ye2
vEal+ o(U v,

where the right-side is known from the above and the
boundary conditions are By =B, =0.

-&-35’”‘g"‘32 {2.25)

If U, U*=0, the homogeneous equation for E in (2. 24)
is the same as that for g(u) in (2.19). Therefore, the
two independent solutions of the homogeneous equation
for E are g{u) and g(u) [“du/g?. We then generate the
complete solution to (2. 24),

E(u)=Gu) Ua2V°‘2+O(UaU°‘), (2. 286)
where
Gl) = g() (e, -
-2/ - wy) [22 e’ /g?) [} du” g). (2.27)

Equation (2. 25) can also be integrated, since the right-
hand side is known. In order to avoid having an integral
with the parallel propagator in the integrand, we first
let

B{u) =-D(u) + H{u) U, V2 + J () + K@)
— (= ug) /(uy — u )T y) + Kuy) ], (2.28)
where
T)=-2,8%, V" [ gdu, (2.29)
K@) =(0,8°%,,V"/00%)- g) + 20,07 [ gaul,

(2.30)
and where H(x) then satisfies the differential equation

-2, U*/T,U%) - 20 [, gdul’ +(496) = ¢

(2.31)
Then H(u) is determined to be
H@)=L) — (u— )/ (uy - uy) Ly), (2.32)
where
L) =1/T,0% - [} (406G +2¢ Jut "
~ i egdum) au’. (2.33)

It is convenient, as in I, to have the deviation vector
at « expressed explicitly in terms of the arbitrary end-
point deviation V"2, Define the two-point tensor S“,,2 by

Vi) = S*, V2. (2.34)

Then S*,, has the explicit form

s, =zlg+ng", +i(g~-np*. 8%, + GV,

+ 2 (_u_:_ta_é(gw)_

BY (TTH u
Fo U \ 1y —uy Gw‘ﬁu)(U - U9,

(h- (T - v*) Ty ",

L1
20, U°

u
+HU“UV2—2(/ gdu) U0 8%,
u

1
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u ~
g+ ZZIJ;BUB / gdu) U“U,g’v2
b

- Uy
r2 47" ] gdu) U*y.,
Uy —Uyg uy ']

_wumwg (1 N azf“ﬂ Ui
Uy ~ Uy (UazUaz)( 1+2¢;52U 4y gdu vy

(2. 35)

+_1—<
U U™

+0O(U, U™,

One can verify that U, S“ =(-wu)/(u,—u,) U, , as is
2
required from (2. 9).

{1l. GEOMETRICAL RELATIONS

In this section we compute the second derivatives of
the world function, derivatives of the parallel propaga-
tor, and evaluate the two-point scalar A2 for two
space—time points in the Schwarzschild geometry which
are separated by a null geodesic. Our calculations
follow the formalism of Synge® and DeWitt® as outlined
in L.

Let Q be the world-function (or geodesic interval).
Then

Q — (uy —uy) U,, and sz:(uz—ui)U

HERY = “2-
The second derivatives are found by varying these rela-
tions with respect to the end point x, and using the ex-

pression for the deviation vector V¥, From (I.3.3) and

(I. 3. 4) we have generally that
5
Q;uj;"2 = (uy —uy) u Suvz oy’

o)
Q”“ZWZ = (u2 —_ u,) [a S‘“’z] e .

Taking the derivatives of S,,, gives for (38.1),

(3.1)

(3.2)

Q; givy = - (u2 - “1) {%(g; +h;) gu1v2 + %(g; - h{)puiaigaivz

1

1
+ G;d) u1UV2+ U Um‘ [—1;1 - %(g{+h;)

- G{Zp;ﬁiUBi] (Uu1 - Uui) Uv2
bt M- g (T, - U,) Ty, g
U Uai 1 &1 by Ky 84 ve
__L__
+H1'UH1UV Ua Ua U U g V2
+ 2 fuz & ]U
Uy — Uy ug gou “'14);”2
1 1 /"2 ] &
— ~ 2., UP2 du (U, U,
+“z‘”1 Um2Um2 [1 Vio “ i 1
+O(U,U%). (3.3)

1t can be verified that U“m;“];,,2 =-U,, and Q;“;,,ZU”Z
=-U,, as is required from differentiating the identity
Q,,*=2Q. For (3.2) we find
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é'(gé - h2') pu2v2

2 / K ]
gadu
Uy~ Uy Ty

fjuzUVZ"'ngijz 1 17 .2 ’
+ = —3(g3+h
Ua,U® up — 4y (g3 +1a)

Q;uz?"z = (up — uy) { 2(g3 +h3) Bupy *

+ (d) H "2 + Uuzzlb;vz) [" 1+

2 )
2 (1~
+¢;EZU€ (1 Uy — Uy £1 gdu)]
17 U, 1
_.,“_2_32. g el bk N I
+2 Us Uaz(hz )+ﬁa2Ua2[ Uy — Uy

+3(g5 +hy) - 20,0, U + HU, U™

+2 MﬁazU“z + (;4,U%)?

) S, ean] prown

Again we can show explicitly that U*2%;,,;,, =U,,. The
contraction of (3.4) results in a simple expression

Q. 2= (uy —uy)(gs +h)) +2+0O(U, U

o]

3.4)

(3.5)

The differential equation for A1/2 defined in I1.4.5, is
then

d

@ In(al?) = (1/uy —uy) - 3(g3 + B3 +O(U,U*)  (3.6)
which has the solution (normalized to A1/2=1 when P,
and P, coincide)

AV = (u, —u) g}V + O(U, U),

(3.7

where care has to be taken in solving (3. 6) to distin-
guish between derivatives with respect to %, and deriva-
tives with respect to u keeping u, fixed. As noted be-
fore, g{ is always finite. However if the points P, and
P, are situated such that %{ is infinite, then a1/? will
become infinite. For a fixed P, the locus of such points
P, defines a caustic surface.

The derivatives of the parallel propagator, expressed
in terms of S“,Z, is

g“:"z;*'z = _/;‘:2 guiaguz,BRuB,e SY)?Uﬁdu' (3.8)

Using (2. 2) and (2. 35) results in the explicit expression
. Uy ~
gu1u2;l225gu17«¢2 /;1 ¢[(g+h') Uu2+3(g"h)gv2aUu]du

+3U, /uz ¢(g—h)[gu p*°g
vy ug j oy

2

+ = ~ Ua gu1BUBz>).20 ]du

+ "2‘ /;1 ¢(g+k)(guiapaogolz
2 Un Ux ~

2 . ~

+UX2 ’/u; ¢{3G(gu1ad)' gpzsUB)
Y
+Uv2 [G (guimw +2[7;E[]‘& guer >
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2 u— Uy
d Lo )
Ua ( "y — “1) gu21 ] }du (“‘1 Vz)

+0(U,U%).

From (3 9) it follows that g‘,i,,,‘,;,‘zU"2 =0 and

gcz = &oguysn, 841,y s expected. The contrac-
tion of }32 Lz) wh1ch appears in the integral equation for
the Green’s function for a vector wave equation, is

2 u—u
Vo el U W
Sugry Z_U“i.[; ¢[2<u2-u1) (g+h)] du
u ~
_3>/; d)(g-_h)g—u-jottlrx

) ~
-3 f d)G[zp;aU"‘(Uul+gHBUﬂ)
U

- U, U 8u VPP du +0(ULU®).

(3.9)

(3.10)

In a series expansion in powers of the Riemann tensor,
(3.9) is of first order in the Riemann tensor, whereas
{3. 10} is seen to be of second order.

V. NULL GEODESIC LIMITS

As noted in I further derivatives of (3.3), (3.4), (3.7),
and (3. 8) require a knowledge of the terms of order
U,U®, which have been ignored thus far. The methods
of null geodesic limits allows us to compute these
derivatives more easily than brute force calculations.
We illustrate this for the computation of the third de-
rivatives of Q and for the evaluation of (a!/?),,*, which
has to be known in order to define the scalar Green’s
function in the Schwarzschild geometry.

We first write Q. ,,, in the form

Qui=0a8,,+bp,, +c,Q,,+c,Q,, + exp(ﬁ;ufl;v +fu,52),

(4.1)

where a, b, c,, and e can be read off from (3. 4) by
comparison. f,, is not defined by (3.9); however we as-
sume that £, , is that quantity which makes (4. 1) valid
both for null and nonnull geodesics, There is an
arbitrariness in the definition of the coeifficients in
(4.1). In particular we produce the same ,,,, under
the “gauge” transformation

fuv™flv =fu,+ aguu+ﬁpuv+7ug;u+yvﬂ;u + 6ﬁ;un;p

a—~a' =a-aQ, b—b'=b-p5Q,

(4.2)
c,—C=c,—7,8, e—~e’ =e-08Q.

A “gauge” will be chosen that results in the simplest
relations.

The identity Q*Q,,,,=,,
tions on (4.1):

leads to constraint equa-

¢, +{a-1)=mQ, (4.3)

b+eQ, % =nQ, (4. 4)
and

2, +fu oV +mR, +n82,, =0, (4.5)

where we have used Q'*Q,, =29 and where m and # are
undetermined by the constraint condition. In the
geodesic limit (NGL) the right-sides of (4. 3) and (4. 4)
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vanish, Using (4. 3) and (4.4), the trace of (4.1)
becomes

2, %=2(a+1)+Q[ f,*+2e+2m] (4. 6)

which agrees with (3.5) in the NGL.

If we differentiate the identiy ©;, =Q,,,,2'%, we find

Dnio= D00+ Rop o WO + Q. D0, (4.7)

On the left-side we can substitute (4. 1) directly. On
the right-side the first term can be evaluated directly
from (4.1), and, in the NGL, f,, does not appear. In
the second term on the right we use (2.2), and in the
third term on the right we use (4. 1) twice. After sub-
stitution the resulting expressions are reduced to linear
combinations of the tensors g,, and p,, and tensors
proportional to £,, and ﬁ;uo Equating coefficients of
like tensors results in a series of differential equations
for the functions a, b, c¢,, and e along the geodesic.
From the coefficient of g,, we find

A, SV +al—pt—a=0, (NGL) (4.8)

and from the coefficient of p,,

b.o V% +2ab - b +3¢Q,, =0, (NGL) (4.9)

where a, Q% =da(u)/d In(u —u), etc, Taking the sum
and difference of (4. 8) and (4. 9) leads to the uncoupled
equations for (a+b) and (a -b),

(@+b),,¥*=(a+b) - (a+b)?-3¢Q,,0,  (NGL)(4.10)

(@—b),,%=(a-D) - (a- b +3¢Q,,2°. (NGL) (4.11)

In terms of (3.4), (a+b)=(u, —u) g and (a - b)= (uy — uy)
hj where a and b are evaluated at the end point u,. It

can then be shown that (4.10) and (4. 11) are satisfied

by the normalized g and /2 which are solutions of (2.19)
and (2. 20).

From the coefficient of ©,, in (4. 7) we find the differ-
ential equation for ¢,

Cusa¥¥=—c,(1+a)-b(C, +¥,,) + 52, (¢~ c,c%)
-ef,, (0 +0, 0+ 0,25,  (NGL) (4.12)
and from the coefficient of fl;,, in (4.7) we find the
differential equation for e,
e, V=e(29,,0%-2a-1)+3¢,

which is consistent with the condition (4. 4). Further,
the equation for the vector function ¢, can be reduced
to a series of scalar functions by letting

(NGL) (4.13)

Cy :pw;u+SQ;u +1ﬁ;ua (NGL) (4u14)
which when substituted in (4. 12) yields
(NGL) (4.15)

(NGL) (4.16)

PV +p(l+a+b)=1-a-b,
$;oV % +3s =Mp — 3ptY, P
—(p+ 1) 1 = th+ 20,
oV +H2+a+b -, %)
Np el b— i, 2, (NGL) (4.17)
where
Col® =P, F% +2p(s +1) Y, (O + 251 Q,, 852,

(NGL)

550 J. Math. Phys., Vol. 17, No. 4, April 1976

C SV =T WY =py, W +5Q, %, (NGL)
and one integral of (4.15) and (4. 17) is known:
Qc,=1-a=pd,, D +1Q,, (NGL)

A more detailed set of relations can be found from
the equality

- - R}

LI suiny wn $50=0, (4.18)
where the third derivatives of ©, found from (4.1),
involve f,, and thus a knowledge of (4.1) off the null
geodesic., We therefore substitute (4. 1) and (2. 2) into
(4.18), and, after differentiations are carried out, we
take the NGL. As before this leads to a series of
equalities of coefficients of various tensor terms. In
deriving the information extracted from these equali-
ties, one must introduce new undetermined functions,-
since, for example, a term in (4, 18) of the form g,,9,,
could appear both as a coefficient of g,,, and of Q,,. In
the following these unknown functions appear on the
right-sides of the equations, We shall find many can be
eliminated by a judicious choice or gauge, using (4. 2),
In order below, the equations follow from the coef-

ficients in (4.18) of g,, (or g,,),
puy (OF puy), R, 9, (or 9,,), SNI;“ and ?2;,, (or SNZ;)‘):
A~ bd);)" acy — EQ;A (b + zp;aﬂ;“) + ¢Q;x:qg;x+7’§;x ’

(4.19)
by + 0%, - bey - e?l;x((l -, o, %) + 3¢>?Z;)L =0, + w?l;x,

(4.20)
Con= Cayp =8, Fr = Q F, + 2,6, - ,,G,, (4.21)

Cupn— CuCr— 8, (&, + 0y ~ e8,,) = ey, (0,5 + ) — Fun

=qGuy + Vpur - QP+ H R, + 4,0, + R, K,

(4.22)
ﬁw[e;h +eley+¥.,)] - ?Z;k[e;,, tele, +,,)]
=Q,, K, ~ 9, K, +L,Q,, ~ L., (4.23)
0=+ 7gur+ Wy — 2,,G +J,Qn = @, Lo+ M, Q5.
(NGL)

Because of the antisymmetry of (4.18) in v and A, F, is
only defined up to terms parallel to Q,, and G,, L, and
M, are defined only up to terms parallel to Qw Further,
consistency of (4.21) and (4. 22) places further
restrictions.

If we successively multiply (4.24) by g**, Q*Qi*,
and $*QF*, the three resulting equations imply that
=0, Similarly if we successively multiply (4.24) by
por,H Y, and $$4 0, the three resulting equations
imply that w=0. Returning then to (4,24), and multi-
plying successively by %, §* 0*, and %, one can
then show that G,, J,, L,, and M, are linear combina-
tions of &;, and ﬁ;k, with scalar coefficients, More-
over there are only four independent coefficients, so
that we can unite

Gy =+ 80 La=F%0 +F20
=715 +f3§2;>u M, =f82, +,f4§;x,

(NGL} (4.25)

where fy, f,, f3, and fy are functions which are not
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determined by (4. 24), and f, and f, are undetermined
by (4.18) in the NGL. If we multiply (4.19) and (4. 20)
by §2°*, setting » =w =0 as determined above, we re-
produce {4, 8) and (4. 9). If we multiply (4. 22) by Q**
we obtain (4. 12) only if the chosen functions obey the
consistency conditions
m—q+ - £Q,, % =$(c,c* - ¢), (NGL) (4.26)
n— 0= K = f38,, 0% =2e (b +C 0% +1,,8°°).
(NGL) (4.27)
We now make use of the “gauge” transformations (4. 2)
in order to eliminate some of our undetermined func-
tions. In particular if we choose
a=-q, B=-v, Vu=F,-fiQ,, (4. 28)

then in the new gauge the right sides of (4.19), (4.20),
and (4. 21) vanish. In particular this last equation shows
in this gauge

Cuip=Cyiue (NGL) (4.29)
(4. 22) is then consistent with (4, 29) only if the further
restriction holds that

Q,(F*+HY) =8, ,(J%~K). (4.30)
With (4. 30) and the gauge choice (4, 28), the right side
of (4.22) becomes just a linear combination of Q..9Q,,

and ,,Q,, with scalar coefficients. We can then take
the trace of (4.22), which yields

ca’® = cac® - 2e[¥ (@ ¥+ (1= a)]-f,*=0.
(NGL) (4.31)

This last expression is particularly important for the
evaluation of (a1/?),,*.

The differential equation for a¥/? is
(1nA“2);aQ;a — %(4 - Q;a;a)-
In the NGL (4. 32) becomes
(Inat/?), Qi*=1-a. (NGL) (4.33)

If we differentiate (4. 32) and take the NGL we obtain the
differential equation for (Inal/%), -

(nat’?),, . Qi =~ (na'/?), Qi*  —1Q. 5%, (4.34)

We substitute Qi*,, from (4.1), setting  =0. We find
the last term from (4. 6), setting 2 =0 after the deriva-
tive is taken. This yields the differential equation in
the NGL:

(4.32)

(Inat’?), . @ +a(lnal’?),, +bp,%(nat’?),
+c*(Wnal’?), Q. +c, (1~ a) +ef,, ¥ (Wal’?),, +a,
+ Q. (f,® +2e +2m) = 0.
(NGL) (4.35)
The solution to (4. 35) is
(Inal’?),, =c, +£9Q,, +7,9, (4. 36)
where £ satisfies the differential equation
L@ +20 - 30+ 50, +3f, % +e+m=0,
(NGL) (4.37)
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and 7, is undetermined by (4. 35). If we differentiate
(4. 3) and use (4.12) and (4. 29) we find that in the chosen

gauge
m=de 0% - 1o, (NGL) (4.38)

so that m can be eliminated from (4. 37). If we differ-
entiate (4.36) and require that the expression be sym-
metrie, then

Ty =&, +€Q;,, (NGL) (4.39)

where € is undetermined. However, Q*m, =Q**¢,, is
determined by (4. 37) and (4. 38). Therefore, we can
take the divergence of (4. 36).

(Inal/?), 3* =¢ " = 2c,c% - 22 +2¢ ~ £, +2L(a-1).
(NGL) (4.40)
We then use (4.31), (4.36), and (4. 40) to find
(a172), e =24 e (), 0% ~a)+¢].  (NGL) (4.41)

In terms of the parameters of Sec. III, (4.41) can be
expressed as

(A172),,1%2 = (uy — uy) (gh ) 2 {(ng - £9)/ T, U%2lW. 5 U
- 3(g + )} - m/7i}
(NGL) (4.42)

V. GREEN’S FUNCTION AND DISCUSSION

As shown in I the Green’s function for the scalar
wave equation can be written in the integral form

blx, 2) =al/? /4w 5 (Q(x, 2))
- (1/47) [[aV2(x, 2)), 0 SRR, 2)) (x, x7)
X w/:?d4x' (5.1)

where 65 indicates that only the retarded root of 2 =0
contributes, and where there is an implied sum over
multiple null geodesics. It can be seen from (4. 41) or
(4. 42) that the last term in (5. 1) vanishes in flat space—
time, so that in a curved space—time (5.1) represents
an iterative expansion in powers of the Riemann tensor.
However the scattering term in (5. 1) is known exactly
through (4.41), so one does not have to perform an ex-
pansion also on that term, as would be the case in a
general space—time,

It is somewhat instructive to examine (5. 1) in a weak-
field limit, in order to gain some feeling as to the ef-
fects of the scattered contributions. To first order in
the mass m, g and & can be written as

g=(u—u)/luy —uy) - x, (5.2)

h=(u—uy)/(uy —uy) + X, (5.3)
where X is a function, linear in s, which satisfies

X" =~ Bmh/v>) - uy)/(uy - uy), (5.4)

subject to the boundary conditions x; =X, =0. In the
integration of (5.4) we make use of approximate radial
equation

2

<ﬂ> =1-(R*/r( - 2m/v)=1 - hi/r?,

T (5.5)

where # is normalized such that |dy/du! —1 for large
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v, and where the additional term that is ignored con-
tributes to x in order m?. The minimum in 7 along

the null geodesic jolning u; and u,, has the value 7y
(=7) and occurs at # =u;. The relation between » and
is, from (5.5),

\u— 1y = (2 — ¥RV 2,
The solution of (5.4) is then

X=m/(uy - ug) {f - u)(1 /v~ 1/7,)

(5.86)

+ 20— u) /v [rg ~7) = u —uy) /(g = u) (ry = 75) 1}

(5.7)

From (5.2), (5.3), and (3.7) it can be seen that there
is no contribution to A!? which is linear in m, so that
al/?=1, However if we evaluate g{ separately we find
that the assumption of small x breaks down if the null
geodesic between uy and u, passes sufficiently close to
m. Specifically if »{> v, and »,> v, then g{ becomes

g1=1/(ry + vl = @m/vd) v,/ vy + 7). (5.8)
Noting that the deflection angle @, to order 1, is
4m/7,, we can apply (5.8) only in a region for which
8;<(1/7,+1/%). This means simply that (5.8} cannot
be applied to null geodesics which are deflected in
passing m such that P, and P, lie on a straight line
through the origin. Moreover, in the computation of
Al there will be corrections linear in w whenever
the second term in (5. 8) is of order (m/ry)!/%. This
means that generally one must perform a calculation
beyond the linear approximation to treat those null
geodesics emanaling from P, in a solid angle of order
m/7; directed towards m. Thus the linear calculation
does not {reat focusing of the null geodesics or those
which undergo large deflections or wrap-arounds. Al-
though the latter geodesics will be found at points other
than the backward direction, their amplitude (i.e.,
A%y will be insignificant in the linear approximation.

In the linear approximation we can rewrite (4. 36) in
terms of X; so that the resulting expression can be used
in the Green’s function (5.1):

. il 1 fdr 1 i
172y ey _ Xo¥3 _(_ _ ]_ n
(a );“2 7 [7’2 du/, wuy—uy P

(5.9)
where Xj is, from (5.7),
r___m dy up — 2y 20y —uy)
= ”2*“1%(‘1")2[ 72 " ¥
+———2—-L2(“°‘“)(-1-—?~” =7 >} 5. 10)
¥§ Uy — Uy

It is not obvious from (5.9) and (5. 10) where the
dominant region of scattering is located and what effect
this scattering will have on the Green’s function (5.1).
Let us consider the case in which the scattering point
r is situated such that » <<7;. Let p and z be polar co-
ordinates with axis the straight line from », through
the origin, with positive z being on the opposite side
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of the origin from 7,. Then (5.9) and (5. 10) give the

scattering
F4
1+2 )+ .
()]

Note that for z=0, (5.11) becomes — m/»3, which is of
order the nonzero components of the Riemann tensor
at »; For z< 0, lzl>p, (5.11) becomes approximately
- m/(4r z%), which is again of order the components of
the Riemann tensor, and which approaches 0 as 1z is
increased towards v;. For z>0, lz|>p, (5.11) ap-
proaches — m(4z/p" + (1/47) z%], which grows as z in-
creases. This growth continues until the assumption
lzl <7 breaks down. In factif lz{> v > g, (5.9) and
(5.10) imply that 82, 1% — _4my3/pizt, which decays
to 0 for large z.

2

. z
A“Z;a'“‘ =—m [—:2—-3 +

o7y (5.11)

2y

The dominant effect of the scattering (5.11) is a de-
crease in the amplitude of the signal being propagated
from »; to ». Again with »<<#,, the incident signal is

90 = (1/4mry) explio(ry + 2)], (5.12)

where a Fourier time transform has been taken, and
terms of order m in the incident signal are ignored
since the scattering is of order m. If we consider the
wave

1 (r+2)

) _ m . 1
P = T, eXp[zw(mz)]V =) (5.13)
we find that
(V2 + wt) $'0 = (1/417)) explio(r; + 2)]al/2 e
+ 2iw/P)2 - 2/v) P, (5.14)

so that #'1’, added to the first term of (5,1), accommo-
dates all of the scattering effects in the zero frequency
limit. The correction, arising from the last term of
(5.14), is an effective scattering which is localized
near the line p=0, z> 0, Part of this scattering gen-
erates a further correction to ¢ with phase exp(iwz).
The remainder generates a scattering which propagates
radially outward from the line p=0, z> 0, with a phase
which indicates propagation to some point z on the line,
and then propagation from that point to the observer’s
position. This scattered component is in agreement with
that found for the scalar wave equation in a weak field
approximation by a different technique, ® in which it was
assumed that there was a spherical body of mass m at
the origin,

The application of (5.1) is not restricted to weak field
calculations, of course, On the other hand, it appears
that a simple analytic solution is not possible for the
Green’s function, since (5.1) indicates an iterative so-
lution., The use of (5.1) in, say, radiation problems
would therefore indicate that numerical methods would
have to be employed. The method derived in this paper
does allow an exact calculation of the scattering term,

P.C. Peters 552



553

which otherwise would have to be found by a further ap-
proximation scheme. Moreover the results for geodesic
deviation away from null geodesics has many possible

applications aside from the Green’s function calculation.
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Determination of unitary, analytic representations of the
conformal group in 241 dimensions using the operator
formalism of the Gel'fand-Naimark Z basis
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Operator formalism of the Gel'fand-Naimark Z basis is used to determine the unitary, analytic
representations of the conformal group in two space dimensions and one time dimension [SO(3,2)). For this
purpose an operator Z, which is an operator valued function of the generators, is formed. Common
eigenstates, labeled by d, s, and Z of three commuting operators Z, I,, I,, are taken as the basis states of
the representation space. Two series of the representations d = o and d = —1/2+ id) are obtained for S=0.
An invariant scalar product is obtained in the space of homogenous functions f(Z).

I. INTRODUCTION

The operator treatment of the Gel’ fand—Naimark Z
basis was first used for the groups SL(2,c¢), SL(2,R),
and SO(2, 2). 12 The formalism can be outlined as fol-
lows.

Let A= (2 %) be an element of the finite-dimensional
representation of a noncompact group G, and U be any
unitary representation of the same group. If an operator
Z which is a function of the generators J,, of U can be
found with the transformation law

UZU' =2 =(aZ +b)(cZ +d)™, W

then the eigenstates of the operator Z, which are labeled
by the eigenvalue Z, can be considered as the basis
states of the representation space.

To obtain such an operator Z, let 2 be a matrix
satisfying the equation

UQU = AT'QA, (@)
and ¥ be the diagonalizing matrix satisfying

QY = Yw, (3)
where w is a diagonal matrix and

= (5)
Let us define the operator Z as

Z =it 4)

A transformation law for Z can be obtained using Eqgs.
(2) and (3). Indeed

USQUUYU = U U™ (5)
Since w commutes with U“, the above equation becomes

UQU-\TpU ™ = Ul w; (6)
but

AIQAUYU = UYU™'w (7
or

QA TYUY) = (A UpU Nw. (8)

This shows that AUSU™ is equal to 4 up to a diagonal

554 Journal of Mathematical Physics, Vol. 17, No. 4, April 1976

matrix A(A), i.e.,
AUPUT =da(A), UpU™ =A"19a(d), 9)
or
U U™ = (@, + b )X (A), Uth,U™ = e, +dip I (A).
(10)
So the transformation law for the operator Z becomes

UZU'=(aZ +b) (cZ +d)"". (11)

Il. A REVIEW OF SO(3,2)

In this paper SO(3, 2) will be treated as the conformal
group in 2 +1 dimensions. The conformal group in
2 +1 dimensions consists of Lorentz transformations
JY, 80(2,1) subgroups, two space and one time trans-
lation p*, dilatation D, and special conformal trans-
formations C* (¢, J, k=0,1,3). Commutation relations
of these generators are given as:

[Jkl’ Pm]:i(gkmpi_glmpk)’ [Jkl, Cm]:i(gkmcl_glmck)’

[c*, c'l=[P* P'l=0, [D, P*]=iP*, (12)

[D, C*]=ic*, [C* P =(i/2)(g"D+J%).

Here %=1, g" = g% =1 are the elements of the metric
matrix and %, [, m run through 0,1,3. SO(3, 2) has two
Casimir operators, namely

IlzJabJam IZ:EIleawa’ (13)
where
wGZEGbcderche,

and €504, is the Levi-Civita symbol in five dimensions.

IH. CONSTRUCTION OF THE OPERATOR Z

To construct the operator Z let us consider the 4x4
real representation A of SO(3, 2) with infinitesimal
generators v,, and a unitary representation U with in-
finitesimal generators J,,. If the invariant operator
is defined as

Q= 2iy,, J?, (14)

Copyright © 1876 American Institute of Physics 654



then it satisfies the condition
UQU-'=AT1QA.
Let us consider the generators y,p5 of the 4 X4 rep-
resentation of O(5) in order to determine ¥,

YAB:(1/4i)[Ya>7b], A’B=0!1)3,5y6’

where
¥ =I®0;, vy=p3B 0, Ye=p® 0y,
(15)
Ys=pa® 0y, ¥3=—I130y.

Here 0y, 0y, 03, p{, Py, p; are the usual Pauli spin
matrices, I is the 2X2 identity matrix, and ® means the
direct product.

Letting vy — — #v,y, ¥¢— — vy, and indicating p,® 0, as
PO, One obtains the generators of the 4X4 representa~
tion of SO(3, 2) as

V5 =— (i/Z)Pgl, Y3g == (i//Z)p303, Yio=— (i/Z)p301,
ve1 =310y, vgo=— (i/2)psl, vs0=— (i/2)p ],
Yes=— (i/z):0103> Yo == (i,./'2)9101 s Y53 = 20203,

Y51= 2p204. (16)

Using the metric gyy=gg=~1, §1=8un=85=*+1, we
find that
Q= 24y, J*

D+ 04K, + 0K, +i0,d, C'~g,C’~0,C!

P'+g,P? +o.P! -D-0K,— 0K, +i0,d,

{17

where Ky= Jy, Ky =Jy), and J,= J;, are the generators
of the SO(2, 1) subgroup. Defining the quaternions

P=P°+0¢,P%+0,P! (2%2 real symetric matrix),

Z=2"+0,2"+0,2! (2% 2 real symetric matrix),
C=C"+0,0% +0,C! (2x2 real symetric matrix),
J=0,K* +0,K' - ig,J, (2X2 real traceless matrix),
(18)
the operator © can be written as
r _
Q:(D;J _DC_J>. (19)

Here C represents the quaternion conjugate of the

J

mairix C, and is defined as

C=0,CT0,=C"-0,C*-0,C". (20)
Now, let us diagonalize the matrix Q by the matrix
P=G1), i.e.,

by ¥y

Q =i w, (21)

¥y by

where {,, ¥, are 2X2 matrices with operator elements
and w is a 4 X4 diagonal matrix. Defining the operator
Z, ihe quaternion conjugate of Z, as

Z =yiy! (22)
and using Eq. (19), we obtain
D+JT C AR Zb, w, 0
P -D-J 5 | TN\ g, 0 w ’
(23)
and
D +ITVZ iy + Ty =iZ oy, (24)
PZy ~ (D + )y = ithywy. (25)

Since € is an invariant operator, its eigenvalues can be
written in terms of the eigenvalues 4 and s of two
Casimir operators of SO(3, 2}. In fact we will determine
two Casimir operators in terms of d and s in the fol-
lowing section. Here d is the eigenvalue of the dilatation
operator D, and s(s + 1) is the eigenvalue of the Casimir
operator K2+ K,2 - J, of the SO(2,1) subgroup.

Writing ig,wy;' as the sum of a diagonal matrix — id
and a traceless matrix — 7, where ’, invariant of the
S0(2,1) subgroup® is given as

Q' =05, +0,5; — i0,5, (26)

[Si, S,, S; are the generators of the SO(2, 1) subgroup. |
We obtain

Z =P YD -id+dJ~ ),
C=-ZPZ-2dZ-ZQ' -Q'"Z.
The scalar part of PZ gives the dilatation generator D.

In fact the scalar part of PZ =3 Tr(PZ)=D-id=-P,Z",
50
D=-P,Z +id. (29)

Therefore we obtained the generators C and D in terms
of P, Z and Q.

IV. DETERMINATION OF THE CASIMIR OPERATORS /,, /, IN TERMS OF COMPLEX NUMBERS ¢ AND S

The invariant operator 2 satisfies the following equations:

Q=1 +3i0+A, Q'=F-90>+A%-6ilQ+2[,A+3iQ Al,

where

(30)

A={vss, va0ls 56 T30+ [¥560 Yioke TssT10 + [¥s6> ¥a1ls TssTan + 100 Yes)s 50963 + 300 Yerde 50 61 = [Ya05 V51l

X351 = [v10, YssleT10dss + 70 veolo a1 To0 = [vser ¥s0de Tau 50 + ¥eor 55l Teodss + [ve0s il

XJ60J51+[710y Yesls J10J53+[7’60a Yol Jon g1 = [vesr vs1led 351 = v, Y5351 535
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and (Y4, ¥.¢], shows the anticommutator of v,, and y,4. Using

TrQ=TrA=0, TrQ?=-2I,, TrA®=3l,, Tr(Q)=Tr{{,A)="Tr[Q,A],=0, (31)

we obtain

Ii==3TrQ%, I,=2TrQ'- 452 - 361,

(32)

So, we should determine the diagonal form w of the operator & to determine I;, and I,. Since the diagonal form

of 7 is given as?

U S 0
924 =i
7y 0 -S -1
the diagonal form of 2 can be written as

~d+S 0

0 -d-S-1
In this paper we will consider the case S=0. Hence

-d 0

0 -d-1

(33)

(34)

(35)

Using the fact that Casimir operators I; and I, should be real numbers for unitary representations, we obtain the

following conditions for §=0:

(a)d=0, (b)d=-3+id,, where o and d, are real numbers. (36)

V. CONSTRUCTION OF THE REPRESENTATION SPACE rwhere all ¢’s, 8’s, ¥’s, and & are real infinitesimal

Let us define the common eigenstates of three com-
muting operators Iy, I,, and Z, as the ket |d,Z).

Under a unitary representation U, the ket transforms
as

Uld,zy=u@z,N|d,z", (37)

where p(Z,A) is a multiplier fo be determined and Z/
=(AZ + B)(CZ + D)™, Let us first determine the in-
finitesimal generators C, C!, C3, Jyy, J3;, Jy in terms
of canonically conjugate operators Z°, Z!, Z° and

PY p!, P} Equation (28) can be written as

C=-ZPZ -2idZ, (38)

for § =0. Using the quaternion forms of P, and Z,
operators €%, C!, C? can be obtained as follows:

C'=22%z,P" - P"Z,2% - 2idZ°,
cl=2zYzP* - P'(z,2" - 2idZ", (39)
C}=22%z P - PP (22" - 2idZ® (k=0,1,3).

Besides,
Jio =2 Py=ZPy==ZP'~Z,P!,
Jyy=Z4P =2 Py =ZP' -~ Z P, (40)

Jyo=Z4P" = Z\Py=—Z P’ - Z P

Here the metric matrix with elements goo=-1, g1 =g&33
=1 is used for lowering and raising the indices., The
unitary representation U of SO(3,2) can be written in
infinitesimal form as

Uspp=1+i{a, P’ + o Pt + azP? + B,C°

+BC + B3C% + v, J g Yo Ty Bys Iy + 8D), (41)
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parameters. Since Z and P are canonically conjugate
operators, we can take

a ad d
P0:_~___, 1:—'—“"y 3:—.*-
i 2z, P i 5z p i 5z, (42)
Hence,
a 9 9
=1 = AT _—
V=142 570 * N3z, t Mz, @3)

+2d(BiZ |+ BsZ3~ ByZ )~ B,

where
)\O:d()— BO(Z(Z) "f'Z% +Z%) +ZZOZ;;,B3
+2ZZ B =y~ V3L — By,

N=oy + B2~ 25+ Z8) - 224218,
+2Z3Z By~ Zyyy + Zyv, — 02y,

Ng=ay+By(Z3 - 22+ Z8) + 22 Z,48,
= 2Z,Z By~ voZ | = ¥sZo — OZ 3. (44)

Ignoring the second-order infinitesimal parameters,
Ui.s can be written as

3 0 a
= — ,)\ ——— —_—
Uine (1+>«OaZ0 + ‘azl H‘f*azg)
x{1 +d[2(B,Z, + BsZ3— BoZ o) ~ Sl}- (45)
Hence the transformation law for the covariant basis
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id,2) is

Uinfidsz’ZI’ZS> (46)

={1+[6-2(8,2Z, +B:Z5 - BuZ )} ld, 2§, 24,25,
where
6=ZO+)\0, Z{:Z,+)\1, Z§=Z3+7\3.

Now let us consider the infinitesimal form of the 4X4
real representation A™!, of SO(3,2), i.e.,

A =1-ia,P' —ia, P! - ia,P? - ig,C"

- iB;C° — iy  Jyg = Bvy I3y = Byy Iy ~ 18D, (47)
where
PO =5(dos+Jog), P'=2(ds+dyg),
PP =5(Jgs+d3g), C'=2(dgs—Jog), C'=%(J15- Iye)s
Cl=5(Jys = J30), D=ds, (48)

J. (@,6=0,1,3,5,6) are given in Eq. (16). Hence A,
is found in 2X2 form as

A inf Binl
= , (49)
cinf Dlnf

where

A =1= 37,0 + v5i0, + v404 + 81,

Byyy=0a + a0 +a30;, Cie= Bl — B0, — B33,

Dy =T+ (2 v,0 +¥,80, + v,0, + 811, (50)
satisfying
AwtDint = BinsCipr =1, (51)

Using these equations and doing necessary calculations,
the multiplier in Eq. (46) turns out to be det(C,,Z
+D,,,). Hence the transformation law is

Uld,z)=[det(CZ +D)]|d, 2"), (52)
where
Z'=(AZ +B) (CZ + D). (53)

Using the transformation law for the covariant kets we
can determine the transformation law for the function
f(Z). Indeed,

UlRy= [ flz)Ul|z) |dz]|, (54)
where

|dz | = I (Redzi) (ImdZi).
Hence

UlF)=[ f@z)@detcz +D)?|Z")|dz |. (55)

Considering Egqs. (44) and noting

|dz | = |detcz +D|%|dz'|, Z=(D'Z'-B)(~CZ'+A)",
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where

D’ - B’
A= (56)
~-C' A’
such that
A B D' -~ B’ 10
ATA = = , (57)
C D -C' A’ 0 I
Eq. (55) becomes
—_— r7r_ BN (—C*'7? -1
U|F)= [f(D'Z'- B)(-C'Z'+ A) (58)

x[det|(-= C'Z7 +AN P8 |27 |az’].
Hence the transformation law for the operator valued
functions f (Z) turns out to be
f1(Z) =[det(~ C’Z + AN f(D'Z - B") (- C'Z +A").
(59)

If the kets transform with A matrices instead of A™
matrices, then the transformation law for f(Z) becomes,

F'(2) =[det(CZ +D)J* F(AZ + B) (CZ + D). (60)

This transformation shows that 4 must be an integer for
analytic representations.

The homogeneous functions of degree n (z real) have
the same transformation law as the function f(Z). In-
deed, consider the homogeneous functions M (¥, ¥,) of
two operators ¢; and ¥,. Under the group SL(2,R), ¥,
and ¥, transform like

Yi=Lyy, and Yi=Li,,

where 2X2 real matrices L are the elements of SL(2,R).
Choosing M(¥y, ¢,) to be

(61)

M(d)lwl, Zﬁb‘zwb d)1$2’ l/)2¢1), (62)
we satisfy the condition
M(wf, ¢§)=M(L¢1,L¢2)=LM(¢1, %)L-l- (63)

Since M(y,, ¢,) is a homogeneous function of degree n it
fulfills the condition

MO Ty, Xy, MinTe, Xl
27\2"1\/[(11)1251, szwzy d’@za 412251);

(64)

where n is a real number. Letting

A= (detyy)™! = 45" (65)
and noting Z =¥¢;!, we obtain

M@y, Yadbes dide, D) = (detdy)"M(Z,, Z4, Z;). (66)

By using the transformation law for i,, the trans-
formation law for M(Z,, Z,, Z;) is obtained as
M Zy, Zy, Zj)=[det(- C'Z +AN"M(Z}, Z1, Z}).
(67)
Hence the functions f(Z) and M(Z) have the same trans-
formation law provided d is a real number,
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Now we can define the norm (and the scalar product),
in the space of homogeneous functions f(Z), as*

NFiP=c [ |f(2)]? (et ImZ)*3|az |, (68)

where ImZ = (1/20)(Z -~ Z*).

The transformation law for the operator det ImZ can
be obtained by using the transformation law for the
operator Z. Indeed,

det ImZ’ == det(CZ + D)* det(CZ + D) det ImZ, (69)
Using the transformation laws

fZy=[det(CZ + D)}* (2",

|dZ | =[det(CZ + D)*(CZ + D)) |dz’],

the invariance of the norm can easily be shown. Besides,
the norm is positive definite if the operator det ImZ is
positive definite. Using Eq. (27) we obtain

Z-Z'=[P, D]|~iP{d+a*)+[P, J], (70)
besides,

[P, D]=~iP7, (71)

(P!, J]=2iP, (72)
Hence the imaginary part of Z turns out to be

ImZ =3(1 - p)P7t, (73)

where p=d +d*. Since P is Hermitian for unitary rep-
resentations, ImZ is also Hermitian. Therefore, the
space of all measurable homogeneous functions f(Z)
satisfying the condition

|f @) ]*(det ImZ) |f{§{ <o (74)

fdet ImZ> 0
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forms the representation space for the unitary analytic
representations of the conformal group in 2 +1 dimen-
sions, for d an integer.

V1. CONCLUSION

We determined the unitary, analytic representations
of 8O(3, 2) for s =0 using an algebraic method developed
by F. Gilirsey. We study SO(3, 2) only to apply the method
to SO(3, 2) as an extension of the previous works, !
Since SO(3,2) is a noncompact semisimple Lie group it
has a principal and supplementary series of representa-
tions. In this paper we obtained that for s =0, principal
series is labeled by a real number ¢ and supplementary
series is labeled by a complex number d = - 3 +id,.
These results are in agreement with the previous works
on SO(3,2).%% The unitary representations of SO(3,2)
for s # 0 will be studied later.
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Over the complex plane cut along the negative real axis let f(z) be an analytic function of the form

f(2) = s&dd(u)/(1 4+ uz), where Pp(u) is of bounded variation on 0< u < oo . Suppose that the first (N+1)
moments defined by f, = fu"dd(u), n =0,1,..., N, exist and are known. Suppose further that d$(u)
undergoes at most p sign changes, where 0< p< N, as u goes from zero to infinity, the locations of an
associated set of points u = u;, I =1,2,...,p, being known. Then, by means of a simple modification to the
customary Padé approximant method, best possible upper and lower bounds can be imposed on f(x) for all
O< x< . Similarly, for given z in the cut complex plane, a best possible inclusion region can be imposed

upon f(z). Finally it is shown that a best possible inclusion region can be imposed upon f(z) when the
constraint that the set of points u = u;, I = 1,2,...,p, is known is either relaxed or disposed of altogether.

1. INTRODUCTION

Over the complex plane cut along the negative real
axis, hereafter referred to as the cut complex plane,
let f(z) be an analytic function of the form

f&) = [ dow/( +uz), (1.1)

where ¢(u) is of bounded variation on 0 <u <<, Suppose
that the first (N +1) moments

fo= [ wtdetw), n=0,1,...,N,

exist and are known. That is, we know that as z ap-
proaches zero through points in the cut complex plane
f(z) behaves like

F@Y~ fy=fiz +oet (= 1) fr2¥

terms of higher order with unknown
or divergent coefficients.

(1.2)

(1.3)

We suppose further that d¢(u) is known to undergo at
most p changes of sign, where 0 <p <N, as u pro-
gresses from zero to infinity, the locations of an as-
sociated set of points u=u,, I=1,2,...,p, being known.
By this we mean the assumption that we know a set of
points
0+$u1<u2<no<up<oo (1.4)
such that
¢(u) is monotone nondecreasing (nonincreasing)

on 0su<u,

¢ () is monotone nonincreasing (nondecreasing)
on uy <u<uy
¢ () is monotone nonincreasing (nondecreasing)

on u, <u < (p odd)

¢ () is monotone nondecreasing (nonincreasing)

on u, <u < (p even). 1.5)

We do not assume that we know which of the two pos-
sibilities, either “nondecreasing” or “nonincreasing,”
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pertains to a given interval: We assume only that there
is an interchange between the possibilities as « goes
from one interval to the next. The case u,; =0+ refers

to the eventuality that ¢(x) has a “jump” in one direction
al w=0 and then proceeds off in the opposite direction
for u>0.

Given the above information about f (z), we ask! what
are the best possible upper and lower bounds which can
be imposed on f(x) for all 0 <x <=, The requisite bounds
are obtained in Sec. 2 by means of a simple modification
to the customary Padé approximant method for imposing
bounds on functions which are representable by series
of Stieltjes.? In Sec. 3 the bounds obtained in Sec. 2 are
shown to be best possible on the basis of the given in-
formation. Further, it is shown how a best possible in-
clusion region can be imposed on f(z) for given z lying
anywhere in the cut complex plane.

In Sec. 4 we describe briefly how best possible bounds
on f (x) for all 0<x <« [more generally, a best possible
inclusion region for f(z)] can be imposed when the con-
straint that the locations of the points u=u,, I=1,2,...
P, be known is relaxed or disposed of altogether. The
feasibility of the procedure is demonstrated with a
simple example.

H

The motivation and justification for the present paper
is this: Functions of the form (1. 1) occur frequently in
problems in theoretical physics, and a means for im-
posing best possible bounds on such functions, on the
basis of as littie as possible given information, is much
needed. This is borne out by the numerous powerful ap-
plications of such bounds which have been effected in the
case where d¢(u) is known to have no sign changes in

0<y<w, 35
2. COMPLEMENTARY BOUNDS FOR f{x/), 0 <x <o

We consider the effect of the following sequence of
successive transformations on f(z): Let

fik)=r(z),

and define

fle)=[a +uUpz) foy@) - fk-i(o)]/z7

(2.1)
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k=1,2,...,p. (2.2)

We have at the first step
£@)=0/2)[ A +ug) [Tdow@/A +uz)~ [7 dopw).

(2.3)
Now since d¢(u) is of bounded variation on 0 <y <,
that is
[ ldew | <, (2.4)

it follows that for any z in the cut complex plane both of
the integrals in (2. 3) are absolutely convergent. Hence
we may combine the two integrals, yielding

fl(z):f; Ao, )/ (1 +uz), (2.5)
where
$160) = [" (e, - w0 dolw). (2.6)

We now establish the following: ¢,{u) in (2.5) is such that
(i) it is of bounded variation in 0 <u <, (ii) d¢;(u) un-
dergoes at most (p - 1) sign changes as u progresses
from zero to infinity, the locations of these sign changes
being associated with the points u=u,, 1=2,3,...,p,

and (iii) the first N moments

- fo”ufd¢1(u), j=0,1,...,N-1, 2.7

exist and can be determined.

To establish (i), we simply observe that

S lag@] = [T luy-ullag)]
<uy [7 ldo) [+ [T uldow)]
=u [ |dg@)| + | [ udo@ - [} udow)]

+ fowuld(b(u)}

<uy 7 |dow) |+ 1] +2u, [ ldoe) | <.
(2.8)
The assertion (ii) is immediate from
Ao, w) = (uy—w)dp ),

together with the original assumption (1.5) on ¢ ().
Finally, we have

51):]0- uj d(bl(u):uiff-_ff*l’
j:O,l,...,N-—l,

(2.9)

(2.10)
which establishes (iii).

The following theorem now follows at once by induc-
tion through the sequence of transformations (2. 2).

Theorem 1: We can write

fle)= [Tde)/ M +uz), k=1,2,....p, (2.11)
where
¢k(u):j0“ (t ~ ) @ty — 10) o0 (10 — w) dplat), (2.12)

and ¢,() is such that (i) it is of bounded variation on
0 sy <o, (ii) do,(u) undergoes at most (p - k) sign
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changes as u# progresses from zero to infinity, the
locations of these sign changes being associated with the
points u=u;, [ =( +1),...,p, and (iii) the first (v +1)
—~ k£ moments

R
j.k>:[0 w de,(u) = i>_:,f,.“.a,‘.k’, ji=0,1,...,N-&,

0
(2.13)

exist and can be determined. In (2.13) we have a{*

which is the coefficient of #! occurring in the polynomial
(g = 0) (tpg — 1) o0 (2, — u).

In particular, f,(z) is either a series of Stieltjes or
the negative of a series of Stieltjes.? That is,

foe)=[" do,a)/(1 +uz),

where ¢,(u) is a bounded function on 0 €u <<, either
monotone nondecreasing or monotone nonincreasing over
this interval. Here we allow the possibility that ¢,(u)
attains only finitely many different values on 0 Su <o,
When we wish to underline a case where

¢,(u) attains infinitely many different values
on 0 sy <o, (2.14)

we will say f,(z) is a sirict series of Stieltjes.

Let us now restrict attention to the case 2z =x > 0. Then
the set of moments (2. 13) with 2 =p constitutes exactly
enough information about f,(x) for the construction of the
complementary pair of Padé approximants,

folx) = [Int{(V = p)/2}/Int [(N = p + /2,00 (2.15)

and ,

5 [1nt{(V - p - 1)/2)/Int {V = ), 2} )

)= (2.16)
( 0 if N=p.

Here we use the notation
Int{7} = integer part of the nonnegative real number 7,
(2.17)

and we write [m/n ], to denote the [r, m] Padé approxi-
mant to the function h{x). The pair of approximants
F»(x) and £, (x) impose complementary upper and lower
bounds on f,(x) for all x >0%5; that is, either

Fex) < fi{x) < Folx) forall 0<x <o, (2.18)
or else
f,(x) < folx) < f~§(x) for all 0 <x <o, (2.19)

Furthermore, the pair of bounds obtained in this way are
the best possible upper and lower bounds which can be
imposed upon f,(x) for all 0 <x <=, on the basis of the
moments ', £, ..., fifh. We note that the existence
of the two approximants (2.15) and (2. 16) is assured. >’

The inverse of the sequence of transformations (2. 2)
is, for z=x>0,

Fat @) =[x folo) + FEP)/(1 +ux),

k=p, p=1,...,1, (2.20)
flo)y=folo). (2.21)
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Let us write £§° (x) to denote the pair of approximants
f»(x) and f$(x). Then on replacing f,(x) by 5 (x) in the
first step in the sequence of inverse transformations
{2.20), we obtain a sequence of pairs of approximants
2@, 79, ..., F19@), and £ (x) = £ (x), corre-
sponding respectively to the functions f,_((x), fpa(%), ...,
f1(x), and fy(x) = f(x). These approximants are given by

7y =[x A2 + fEFLY/(L +up),

k=p, p=1,...,1,  (2.22)

FOu) = £ ). (2. 23)
Now, since the pair of approximants £ (x) impose com-
plementary upper and lower bounds on f,(x) for all

0 <x <%, it follows by comparison of (2.22) with (2. 20)
when % =p that the pair of approximants 7,9 (x) impose
complementary upper and lower bounds on f,.;(x) for all
0<x <, Hence, proceeding inductively through the
cases k=p~-1, p—2,...,1 we deduce that the pair of
approximants ¥ (x) impose complementary upper and
lower bounds on f(x) for all 0 <x <, That is, we must
have either

Fx) < f(x) < fx) for all 0<x<w, (2.24)
or else
F) < fx) < Fo(x) forall 0<x<w, (2.25)

Let us examine these two approximants f(x) and fc(x).
Firstly, there is no doubt concerning their existence:
No snags can occur in the constructive procedure given
above, wherein we start with £,(x) and 75(x), both of
which are guaranteed to exist. Secondly, let us write

folx) = A(x)/B(x) (2. 26)
and

Fx) = A%)/B(x), 2.27)
where

B(0)=B°(0)=1. (2. 28)

Where A(x) is a polynomial of degree at most

Int{(N - p)/2}, B(x) is a polynomial of degree at most
Int{(N - p +1)/2}, A%(x) is a polynomial of degree at most
Int{(N - p~1)/2} (N#p) or else identically zero (N=p),

and B°(x) is a polynomial of degree at most Int{(V - p)/2}.

Then it follows from (2.22) that
Fx)=D(x)/(1 +u ) (1 +2yx) eoo (1 +2,x)B(x) (2.29)

and

Fe&) =D%(x)/(1 +ux)(1 +uyx) eoo (1 +ux)Be(x), (2.30)

where D(x) is a polynomial of degree at most Int{(N +p)/
2} and D%(x) is a polynomial of degree at most Int{(N +p
- 1)/2}. Thirdly, we observe that from (2.20) and (2. 22)
we have

fk-l(x) - }:(-cl)(x) :x[fk(x) - Nk(C)(x)]/(l +uk’f)
=xPFfo(x) ~ £/ (1 +upx)

X (1 +tpyqx) ooo (1 +upx),

k=p, p=-1,...,1. (2.31)
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Now, by the very definition of the pair of Padé approxi-

mants f;°(x), we have?

o) = f0) ~0" ) as x—0+, (2.32)

and

as x— 0+.

Folx) = Folx) =0 (x"?) (2.33)

Substituting the latter two relations into (2. 31) when
k=1, we derive

f) = F &) = fo(x) = F(x)~ O(x™*1) as x—~0+, (2.34)

and

Fx) = 7o) = folx) - ff)~0(x") as x—0+.  (2.35)

The above three observations taken together yield a
succinct characterization for the two approximants f (x)
and f°(x). The requirements (2.28) and (2. 34) are suf-
ficient on their own to define uniquely the polynomials
B(x) and D(x) in (2. 29). The existence of the polynomials
is assured. Similarly, the requirements (2.28) and
(2. 33) are sufficient on their own to define uniquely the
two polynomials B°(x) and D°(x) in (2. 30). Hence the ap-
proximants f (x) and 7°(x) are determined in a similar
way to Padé approximants: The unknown coefficients in
the polynomials B{x), D{x), B°(x), and D°(x) are fixed
by the equations

Bx)(1 +2uyx) (L + upx) oo (1 4 upx) flx) = D(x)~ O (&™)

as x —~ 0+, (2.36)
and
B} (1 +u2) (1 + upx) o oo (1 +upx) flx) = D°(x) ~ O (x7).
(2.37)

Once obtained, the approximants impose complementary
upper and lower bounds on f(x) for all 0 <x <<; that is,
we have either (2. 24) or (2.25). It can be shown that
f(x) imposes an upper or lower bound according as
f# (= 1) is negative or positive, respectively, and
we note that f°(x) is precisely the “f(x)” which one
would construct if N was replaced by N~ 1. However,

in practice, one needs only to construct the approximants
and then see which one is the larger at some chosen
point x; > 0. In the next section we prove, among other
things, that the bounds imposed by the pair 7 ’(x) are
best possible on the basis of the given information,

3. BEST POSSIBLE BOUNDS AND INCLUSION REGIONS

In order to establish that the bounds obtained in Sec.
2 are best possible, and in order to secure a best pos-
sible inclusion region for f(z) at given z in the cut com-
plex plane, we need the following results.

For any kc{0,1,...,p}, let &,(u) be a cumulative
distribution function which has the same properties as
®r(w) in Sec. 2 [¢y) = ¢ (w)]; that is, &,() is such that
(1) it is of bounded variation on 0 < u < e, (ii} d&,u) un-
dergoes at most p — k sign changes as u progresses from
zero to infinity, the locations of these sign changes being
associated with the points u=u,, I=(2+1),(2+2), ...,
p, and (iii) the first (N +1) - 2 moments are

fujdék(u):f}k’ (:j:u"dcbk(u)),

j=0,1,...,N~Fk, 3.1
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We note that from (2,12} ¢,(«) has the property

doylus) for s=1,2,...,k. (3.2)
Correspondingly, we here impose the stipulation
(iv) d®,)=0 forucl, UL Ue- UI,, (3.3)

where I; is some small open interval such that », € I;,
1=1,2,...,p.

Theovem 1I: Let any &,.,,(#) be given for some

kc{0,1,...,(p~1)}, and set

Fr(@)= [ d®u.)/(1+u2). (3.4)
Then there exists some ®,u) such that the function

F,2)= f:dék(u)/(l +uz) (3.5)
has the property

Fue) =[fi" +2F s (&))/ (1 +up2). (3.6)

This theorem is essentially the converse of Theorem I.
Pyoof: We set
U ©
&) = J; d<1>k*1(u)/(uk+1—u)+[fé“—fo APy )/ (thpay — u)]

X [ 8(ttnay - 1) du (3.7)
and demonstrate that this function has properties (i),

(ii), (iii), and (iv), above, starting from the assumption
that &,,,(x) has these same properties when % is replaced
by k+1. In (3.7) 6(v) denotes the delta function of
variable v.

Since ®,,;(u) is of bounded variation on 0 ¢ <%, and
since d®,,(u) =0 for all u<1,,,, it follows that the
function

S a0, 00)/ g - ) (3.8)

is also of bounded variation on 0 <% <, In particular,
the total variation in the second quantity on the right-

and this is necessarily finite. Hence &,(u#) is of bounded
variation on 0 < <, which demonstrates (i), For all
u# u, we have

A®y () =d D uy W)/ ey — u). (3.10)

Recalling the sign change property of d®,,(u), it now
follows that &,(x) has property (ii). Further, since

dd,,(u)=0 forallucl UL,U«w UI,,, (3.11)

it follows a fortiovi via (3.10) that &,(u) has property
(iv). Finally, we have

j: wdd,(u) = fu“ujdrb,m(u)/(uk+1 —u)
-{ f: Ad,, @)/ Uy, —w) —f(gk)]“iq

= Py = [, [ty =)/ gy = w)] d By (10)
(3.12)
so that (3.1) is true when j=0. Forj=1,2,...,N-Fk,
we can write (3.12) as
fow uw’ dd,(u) = f,"Mul,, - £w (udsh +ufiu + oo + 0’ )dd,,, (1)
= S = LA 4 e )

=F®, (3.13)
where we have made use of (2.13) in the last simplifying
step. Hence &,() has property (iii). This completes the
proof of Theorem II.

Now let any &,(z) be given, and define
F,,(z):fnwd@,,(u)/(l +uz).

Then it follows by\ induction through the cases k=p~1,
p—-2,...,0 in Theorem II, that there exists a &,(u)
such that the function

(3.14)

hand side of (3.7) is F(z):FO(z):f: dd,w)/(1 +uz) (3.15)
fo® - f“dém(u)/(um - u), (3.9)  is related to F,(z) via the expression.
- J
| [- () @) &) F P +2Fz) 11
F)=|fo+z [fo' +z | fy" +z [fy" +eet2 +uz)
(1 +u4z)
' (3.186)
(1 +usz)
_(1 +uy2) )
(1 +u,z) J

Let us write the relationship between F,(¢) and F(z) ex-
pressed in (3.16) as

Fe)=T(F))). (3.17)
Then we observe that

fR)=T(fz)), (3.18)
and

F@)=T(F5 @), (3.19)
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las can be seen from the inverse transformations (2. 20)
and (2.22). For any z in the cut complex plane, and any
complex number g{z), it is easy to see that the complex
number T(g(z)) is uniquely defined.

We now observe that the function F(z) has all of the
properties which were originally ascribed to f (z) in Sec.
1. Hence, given any F,(z), the resulting F(z) given by
(3.17) is indistinguishable from f(z) on the basis of the
given information. For given z in the cut complex plane
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let 7,(z) denote the set of values F,(z) obtained as &,(u)
ranges through all possibilities, the open I, I, ...,1,
being allowed to become arbitrarily small; and let 7,(z)
denote the closure of 7,(z). Then since the value of F(z)
is continuously related to the value of F,(z), we have that
f (@) may lie arbitrarily close to T{g(z)) for any given
g(@) e 7,z), on the basis of the given information.

Next, we make use of the following theorem.

Theorem IIL: fu(z) € ip(z) for given z in the cut complex
plane.

Proof: Let any f,(z) and € > 0 be given. Then

folz) = fo“’ doyu)/(1 +uz), (3.20)

where ¢,(u) has the properties (i), (ii), and (iii), given
above for ®,(u), and satisfies (3.2) with k=p. Let J,
denote a small open interval such that ;< J, for I
=1,2,...,p, and such that ¢,(u) does not have a jump
associated with the end points of any of the intervals.
Define a distribution function ®,(x) on 0 <u < by

o Ad,u) uéd J U Jy Uese U,
d‘b‘”("):{ 0 ueJ:U J;U UJ,I., .21)
Then
folz) = fO” dd,w)/(1 +uz) +§ @), (3.22)
where
f,’(z):fh doym)/(1 +uz). (3.23)

If ¢,(u) attains only finitely many different values on J,,
then f}(z) can be expressed in the form

H gﬁ 7):ln
fp(z):m:{ (ﬂ—E"’:z—) ’ (3.24)

where M, is a finite integer, v}, >0, E}cJ,, and E} #u,
form=1,2,...,M,;. The latter statement is true be-
cause of (3.2) with k=p.

If ¢,() attains infinitely many different values on J,
then ff,(z) is a strict series of Stieltjes with finite radius
of convergence. But then, from the theory of Padé ap-
proximants to such functions? we know that we can find
an integer @, such that for all » > @; we have

[ ) = ln=1/n)in | <e/p. (3.25)

Because the poles of [n - l/n]f;(,) are all located in J,,
and because of the strict interlacing property of the pole
locations of successive approximants,? we can in parti-
cular choose n =M; > @, such that none of the poles of
[a, - 1/M;],;(z, coincide with the point z =~ 1/%,. We can
also insist that @; be large enough so that

f3@) =M, = UM ], =0 (x"1), (3. 26)
Hence we can write
st vh
(M, - 1/m,]= 24 T ED) (3.27)

where the v.’s and E}’s have precisely the properties
given below (3.24) and where we have again invoked the
theory of Padé approximants for series of Stieltjes.,

It now follows that, regardless of whether or not ¢,{u)
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has infinitely many different values on J;, each l, we
have

o) - Fole)| <e, (3. 28)
where

~ ) ” d@p(u} é <MZ’§ vi ) 3.29)

fle)= o (1 +uz) T \& I+ER) '

the v},’s and E}’s having the properties given below
(3. 24) and where

F&) = Fole) =0 "), (3. 30)
But (3.29) can be rewritten
f,&):f: dgp(u)/(l +uz), (3.31)
where
d®,(u), uf J U JyUee UJ,
A% (1) =

Ml
é (;%:11 vf,.&(u—E,’,,)), UEJ U Jy Ueeo U,

(3.32)

In particular, ®,(ux) clearly has properties (i), (ii), and
(iii). Moreover, since none of the points E!}, coincide
with any of the points u;, I=1,2,...,p, it follows that
there exist open intervals I, such that u, €71, 1=1,2,...,
p, and such that

d8,w)=0, wuc U, U UIT, (3.33)

Hence Sp(u) has property (iv). Hencefp(z)e},(z). Hence,
since € >0 can be made arbitrarily small in (3.28), it
follows that f,(z) € 7,(z), which completes the proof.

By putting together the above theorem, the italicized
remark immediately preceding it, and (3.18), it follows
that the best possible inclusion region which can be im-
posed upon f(z) on the basis of the given information is
precisely the image under T of 7,(z), for any given z in
the cut complex plane.

Now let /,(z) denote the set of values f,(z) obtained as
¢,(u) ranges through all possibilities, and let /,(z) de-
note its closure, for given z in the cut complex plane,

Covollary to Theovem III: Z,,(z)E F,&), for given z in
the cut complex plane.

Proof: Given any F,(z)= 7,(z), we have at once that
Fy(z) e/P(z) since any $,(u) is a possible ¢,(u). Hence
},(z)C/,(z_z, and 50 7,(z) C £(z). But by Theorem III,
any f,(2) € £5(2) also belongs to 7,(z). Hence /,(z)

C 7,@), and so /,(z) C 7,(z), which completes the proof.

We now have that the best possible inclusion region
which can be imposed upon f (z) on the basis of the given
information is precisely the image under T of /p(z), for
given z in the cut complex plane.

But if we now allow

d¢p(us)¢ 07 s:1’2"--1p, (3'34)
which clearly makes no difference to the setZ(z), then
we see that /,(z) is precisely the lens-shaped inclusion
region, described by Baker, *'? which corresponds to the

information that fF(z) is a series of Stieltjes (or else the
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negative of one) which behaves like
Fo@)~ f2 =20 4 et (= 1)V V25 00)

terms of higher order with unknown
or divergent coefficients (3.35)
as z approaches zero through points in the cut complex
plane. Hence /,(z) can in principle be determined exact-
ly. A corresponding best possible inclusion region for

f () can then be obtained by applying T to £,(z). The
resulting inclusion region has a lens-shaped character.

In particular, it follows from the work of Baker' that
for 0 <x <o, /,(x) contains the points f,‘c’ (x). Hence,
using (3.19), it follows that the bounds of Sec. 2 are

best possible on the basis of the given information.

4. BEST POSSIBLE BOUNDS WHEN THE POINTS
{u/}?_ | ARE UNKNOWN

Here we describe how best possible bounds on f(x)
[or an inclusion region for f(z)] may be imposed when
f(z) is given as in Sec. 1, but the locations of a set of
points {u,}., associated with the at most p sign changes
of d¢(u) are unknown. Having described the method in
principle, we demonstrate its feasibility with a simple
example.

Whatever the locations of the associated points {u,}}_,
are, we may assume that

O+ Suy Suy S ove Sy, s o,

4.1

If we now follow the sequence of transformations in Sec.
2, with the slightly weaker assumption (4.1) replacing
(1.4), we still find that the resulting f,{z) must be either
a series of Stieltjes or the negative of one. Let

) (») ces ()

m m+1 m+n

») (p) o (r)
m+i m+2 soe men+l

D(p)(m,n)z ° . : , (4.2)

. . .

(») (p) voo (»)
msn man+] me2n

for m,n=0,1,2, «=-. Then f,(z) is indistinguisable from
a series of Stieltjes on the basis of the given information
if and only if?

D®(m,n)=0 for all (m,n)cS, (4.3)

where S is the set of all pairs (m,n) such that the corre-
sponding determinantD(”(m,n) only involves moments
taken from the set {f{*’}i=. If we now substitute for the
fﬁ-”}’s from (2. 13) into (4. 3), we obtain a set of necessary
and sufficient conditions to be satisfied by {u,}£, if f,(z)
is to be indistinguishable from a series of Stieltjes on
the basis of the given information. Similarly, 7,(z) is
indistinguishable from the negative of a series of
Stieltjes on the basis of the given information if and only
if

(- 1)™'D® (m,n) =0 for all m,n)<S. (4.4)

Let U* denote the set of choices for {u;}., such that
(4.1) and (4.3) are satisfied, and let U™ denote the set of
choices for {u,};_, such that (4.1) and (4.4) are satisfied.
Assume for the sake of brevity that N— p is odd. Then
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if f,(z) is to be a series of Stieltjes, it follows from the
above and from the theory of Secs. 2 and 3, that the best
possible bounds which can be imposed on f(x) for given
0<x < are

inf  fox) < f(x) <

tuth € U*

fx). (4.5)

sup
g cu*

Similarly, if f,(z) is to be the negative of a series of
Stieltjes, then the best possible bounds which can be
imposed on f(x) for 0 <x < are

inf  Flx) < flx) < Fx).

4.6
(u €U~ 4.9)

sup
(¥ E0-

Since we do not know a priori whether f,(z) is a series

of Stieltjes or the negative of one, the maximum of the
upper bounds in (4.5) and (4. 6) is the best possible upper
bound which can be imposed on f(x) for given 0 <x < o,
Similarly, the best possible lower bound is the minimum
of the lower bounds in (4.5) and (4.6). Likewise, best
possible upper and lower bounds can be obtained when
N-p is even.

If one is given, for example, the additional informa-
tion that ¢(u) is monotone nondecreasing on 0 Su Suy,
then, of course we know thatf,(z) is necessarily a series
of Stieltjes. Then in case N - p is even we have at once
that the best possible bounds for given 0 <x <« are (4. 5).
Again, it may turn out that one of the U* or U™ is empty,
in which case the best bounds will derive from a search
over U™ or U*, respectively.

More generally a best possible inclusion region can be
imposed upon f(z) for given z in the cut complex plane.
This inclusion region will be the union of all inclusion
regions obtained as the set {u,f}., ranges through ail
possibilities in both U* and U~

We demonstrate the feasibility of the above method
with a very simple example, Suppose we are given that

f@)=[" dew)/( +uz), @.7)

where d¢(u) has at most one sign change on 0 sy <o,
and that

f0:2: fi=2, f,=0.

Then what are the best possible upper and lower bounds
which can be imposed on f(x) for given 0 <x <<« ? Sup-
pose that the sign change of d¢(u) is associated with the
point #; such that

4.8)

0 <y, <o, 4.9)
Then we have

fo =20, - 1), f{P=2u,. (4.10)
Consequently, the set U~ is empty and

U ={u; |1 <uy <} (4.11)

whence the best possible bounds which can be imposed
on f(x) for given 0 <x <= are

4 - 1) + (4ud - du, +4)x

inf <
wevr  (1+ux) (20 - 1)+ 2ux) 76
< Sup 242y - Lx 4.1
YET T +uyx) (4.12)
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In particular, at x =1, the best possible bounds which
can be imposed on the function on the basis of the given

information are
F<r@ =<2 @.13)

We note that on the basis of the given information f(z)
could have been the function

Fflzy=1/1+2)+2/(1+22)-1/(1 + 32). (4.14)

ACKNOWLEDGMENT

The author thanks Peter D. Robinson for helpful
discussions.

565 J. Math. Phys., Vol. 17, No. 4, Aprif 1976
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Techniques for integration in function spaces which are not necessarily vector spaces are presented in the
light of DeWitt-Morette’s recent redefinition of path integrals, which does not involve the usual limiting
process, and is therefore free from the ambiguities inherent in this approach. General translated Gaussian
measures defined by their Fourier transforms are introduced on various path spaces and used to derive
generalized moments formulas, and what is essentially the Feynman—Kac formula for the expression of

solutions of the Schridinger equation as functional integrals.

I. INTRODUCTION

Recently, C. DeWitt-Morette I? introduced a new ap-
proach to the Feynman path integral formulation of
quantum mechanics. Its strength lies in the fact that it
does not rest on the usual limiting process, which in-
volves the division of the time interval into a very large
number of very small subintervals. By a generalization
of the work of the Bourbaki group® on Gaussian promea-
sures for integration on infinite-dimensional Hausdorff
locally convex topological vector spaces, what plays the
role of a measure® in path space is defined by its Fourier
transform, which is a simple closed form expression,
usually the exponential of a quadratic form defined on the
dual of the path space for physical applications. This
enables one to reduce many path integrals of interest in
physics to ordinary integrals by use of linear mappings
into R". For example, one has the formula,?

fC Fiy,q), voo s (im0 d oo clq)
= (27)"/% (detf))t/? / . Fluy, ..., u,)
R

X exp[— (1/2)“(/_1)” ”iuj]du1 cordu,,
where

ey

(a) C is a vector space of paths (functions) ¢ :{+¢g(t)
on the time interval T =[1,, ¢,].

(b) the y;’s are bounded measures on T, i.e., ele-
ments of the dual # of C. {u,q)=[r q({)du(t) if ¢ is in-
duced by a function £, [du(t)= f({)dt], and (u,q)=q(t) if
u=25,, the “delta function” measure at .

(c)w, is the Gaussian measure on (, of covariance
the kernel C(/,!’), whose Fourier transform (defined on
M) is

Juwelp)=expl-3 [ [ €t )du(t)du )]

= exp[— 3 We(w)]. (2)

(&) Wi=Welu,, E fT ch(f,[,)dHi(f)dﬁlj(i')- 3)

(e) The Einstein summation convention over repeated
indices is used throughout this paper.

C is real for the Wiener integral and imaginary for the
Feynman integral.

For simplicity, the same symbol is used for the
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bilinear form Wq(u,v) on /) and its corresponding quad-
ratic form Wc(u). In other words, W, n)=We(u).

If the u’s are &’s, then,
Wby, 6p)=C(L, 1), Wc(u,ét)sz C(t,t)dp(t’). @)

In this paper, we further exploit this formalism and,
among other general formulas, present a proof of what
is essentially the well-known Feynman— Kac formula for
the expression of solutions of the Schrddinger equation
as functional integrals.

. INTEGRATION OVER SUBSETS OF VECTOR
SPACES

An example of a vector space of paths on the time in-
terval T is

%)

Let w . be a Gaussian measure on (.. If we now fix the
second endpoint [q(f,) =q,, where g, is constant], the
resulting subspace (g, is no longer a closed vector
space. Can we still define a measure on it and apply the
theory ? The answer is yes, and the procedure is de-
scribed below.

C.={qonT ]q(la):O, q({;) undetermined}.

More generally, suppose we want to integrate a func-
tional cp[q], only over those paths in (_ satisfying (i q)
=b; for n given measures y; and real numbers b;. De-
fine C,, < (. as follows:

L, W EM, b,cRL
(6)

The integration over (,, can be reduced to an integra-
tion over (_ if in the integrand we insert chavacterislic
functions x which vanish when ¢q. 4( . Indeed, if we
define

Cnug{qec.—lg‘l‘i)q):bi)

i=1,..

L f1if x=0
XWO=90 it xs0
then,
Jr olaldw™ @) =[N G, gl [ dlalawcia)

XX((F"I;(I) - bl) A X((p-m q> - bn)a
(n
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where:

(a) w™ is a Gaussian measure on (,,, induced by w
(this is proved below for n=1). Its covariance is, by
definition,

Crult,t)= fC lat) - g®) gt ~ @) ]dw™(g),  (8)

where the integration is performed as indicated above.
The average path ¢(¢) is defined by

an= [ ab)dw™(q). )
Cru
{b) N is a normalization factor, insuring that

fC dw™(q)=1.

It is obvious that

N(bi’ ’J'l) = fC_X(<H1,CI> - bi) oo X((“-m q) - bn) dwc(Q)-
(10)

To evaluate N, we map (_ into R" by g —u;={u;,q),
and use (1). The characteristic function maps into a §
function and we get

N (detﬂ/)"/z

= —b Ty _b
o f Oy =0) e 0l 0y

»

X exp(= zl/ijuu;) dug e du,

-1/2
= @(%2&77_))"—‘ exp(- 3 W3} b:b,), 4y
where
W/c(up “") oco Wc(l"'l’ IJ'n)
’- : . (12)

Wl itq) oe Wc(“-n, b,)

Note: If the b;’s are allowed to vary, then if we inte-
grate over them, after having performed the functional
integral of ¢[q] over Cnus we should recover the func-
tional integral of ¢[g] over all of (. From (7) it is clear
that

fnndh s db,N(b;, ;) fcww[q]dw"“(q)

= fc- elgldwc(q). (13)

This provides an easy verification of certain formulas,
and is, in fact, a generalization of the method of “re-
servation of variables” (see Appendix A).

Theorem:

I(9)= fc o, a)aw™ @)

—e(s 5 s ) (ol

1/2
2rdet [/ )

— det o
x[ o) exP(Eﬁ%uz_ug’: b,.L{/E},,ﬂ)du,
R (14)

where [/ is defined in (12) and
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Weolugpy) oo Weliy, pn) Welpy, v)

. . °

W - Wc(ﬁlm “1) b Wc(“n, U'n) Wc(“m V) (15)
Wc(Vy “'1) b WC(V: p-n) Wc(l’, V)
Proof: (1) gives
I{@)=N"! fC Xty @) = b1) ooe x ity @) = )
X o((v, @) dwc(q). (16)

If we map (. into R™! by g — {«; ={(u,,q) for
i=1,2,...,n', unﬂz(v7q>}) we get

N-tf (det E/)'“2
n+1

I((ﬂ): (‘/’z—ﬂ)mi
R

5(“1 = b1) oo Blu,— bn)

1

n
2 Wi,
, i=

X ¢(un+1) du1 cee dun+1 exXp [" é
1

n

17771 2 3 a1
- ZWml,mi Unyt —il—f H/iy"*l uiuml}

dety/ \'/2 3
(orea) o[ 2

i,Ji=1

Lb.b (W~ Wzb]

1 2
X f (P(un+1) exp [_' 2 Wmtl,mi Unaq

R
no—
= Upet Zi; Wi-,lm-ibi] duml (17)
1=
The result follows from the fact that
W;Ei,nﬂ =detﬂ//detW. (18)

Corollary:

I,,= fC v, q)™ dw™ (q)
—detjy/ \"/? n —  f _detjy \1/?
=<2detw ) H’"(‘.Qb‘ "*11"( 2detyy/ ) )

n 1 _ —
Xexp[izjzl Ebfbj(wi}" i

{2 (5072)]
*3 e \A W) |

where H,, is the Hermite polynomial of order m.

(19)

Proof: Use the formula,

fm x "explax? + bx) dx = (- 1) 2"™a™™/2 H,(b/2Va )

X (- n/a)}’? exp(- b%/4a), [Re(a)<0],
(20)

derived from [g explax? + bx) dx = (- 7/a)}/? exp(- b /4a),

by differentiating with respect to b w times,

Application: Average and covariance in u {n=1)

(a) Average in C,,: For m=1 [H (x)=2x], and v=25,
we get,
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gt dw™ (q) =

7= f el

nu

— detll/ (

n —_
Xexp[ﬁ i%l bibj( i‘jI— 1—;

1 deté{‘/’ ( " = )2
+ P detW § bi Wnd.i .
If b, =0, g(t) =0, the average path is zero in all sub-
spaces of (. of finite codimension. For n=1,

Co={ac Clu,ey=0}, W =[We)l,

(21)

_ Wel) Welu,v)
W= ,
Weli, v) Wel)
= 1 Wev)  ~Weln,v)
W= , (22)
CU \e Wol, ) Welw)
and the iniegral is simply
_ moaons [ =detl/ \ ™2
Iml" /C-_u <V,(I> dw (Q)—(zwc(y‘) )
-1 1/2
<0V o) (g7 e 7 (23)

where det[(/: Weolw) Welv) - Wﬁc(p , V).

It is interesting to check this formula by use of (13),
i, e., verify that

J oo
)

The right-hand side is equal to 0 if »: is odd, and equal
to ) [Wo()]"/2%!, if m =2n [use (1) for the proof].
To evaluate the left hand side, use the following result
{Abramowitz and Stegun,5 p. 786, with f =au}:

j exp(~ a*u®) H,(axu) du
R

exp~ bZ/ZWc(#)] (v, @)™ du*
L @)™ dw* (g)
V2r We(p) C.

w, )™ dw(g)- (24)

Voo (@m)t m
W (—7;')—- (x2 -1)y", forw=2m, (25)
0, for »n odd.

It turns out to be equal to the right-hand side.
(b) Average in (,: Let m=1, v=25, in the above to get
q)=0We (1, 6,/ Welw). (26)
(c) Average in Cﬁz (the space of paths in (., with
specified value at t:gto): If p= 6t0, b=q,, then

a(t) =g, C(t,£)/Cltg, ty)- (27)

General condition on C{(t, t')
Since we would like for the “average path” to be in the
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space, i.e., gc (., we have the requirement g({,) = 0.
Since ¢y in (27) is arbitrary, this forces the important
general condition

Cl,,t)=0, (28)
for all legitimate covariances in ( _.
(d) Avevage in Cy,: Let {y=1,. Then CﬁtOECOD and
G0 =g, Clts, 1)/Cty, 1) (29)
(e) Covariance in (,:
, n Welw, 8) Wely, 6i)
C, ¢, th)=Cl,t')- =& £ B, 30
L) =Cl, 1) Wole) (30)
satisfies the same boundary conditions as the paths,
i, e.,
Colt,,th=0; {u,,C,)= fT C.l, t")du(t) =0. (31)
Proof: We will need the following:
(i) (23) with m =2 [note: Hy(x) =4x* - 2]:
detfl/ DWh(1, v)
v, ) dw"(g) = < A |
J ot w0 =50 (o a
173
"VZC(]J. v) | BWi(u,v)
:W V) - 2 . M
W= owy T TWEW
(32)
(ii) W8, + 0,0 ) = Wo(6,) + We8p) + 2W {8y, O ). (33)
(ii1) Wi, 8, +6p) =[Weli, 8,) + Welp, 8,)F
=Whip, 6+ Welp, 64)
+2Woli, 8:) Welu, 6¢0). (34)
We have
C.(t, 1)

= fC (64,0 = @) By, q - q)dw*(q)
= _fC (64, @) (e, q) 0™ (q) - G(t) T (")
=% fC [$8, + 640, @) = (54, 9)" = (B0, 4)*] 0™ (q)

~ VW, 8:) Welu, 6p)/We(i)

Wa(, 8, + yr)
Welw)

Wi, B, + O4r)
Woiu)

- [wcw, £8,) =

W, 6,) _ b Wi (i, 6,)
Welu) Welu)

- Weiby) + - We(dy)

ch(li, Byr) _ szZc(ll s 5#)]__ szc(H 2 8) Wi, 6pr)
Welw) ZAM) We(u)

Wl 80 W, 8p) .

:‘Wciﬁz, 6!‘)— “/C(u)

(35)

QED
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Also,

f C. (6, du )

w (“’yé')
= [ c,tndult) - —S2 Clt,s)duls)
J I

Wealu)
T
xdu(#)=0, (36)
by definition of We. QED

It is most remarkable that the covariance C, does not
depend on b. However, the measure w* does depend on b
through the average path [see (g) below].

(f) Covariance in Cy,: We have:

t r

Colt, 1) =Ct, t") - ————?——C(g’éiﬁs 2],
C, vanishes at both endpoints; Cg,(#,, 1) =Cg,ff,, ) =0.
Since it is independent of gq,, it is also the covariance in
Co» the space of paths vanishing at both endpoints.
Often, if C(¢, t') is a Green function of some operator,
then so is Cy,(f,’). This is not true in general for
Cult,t).

(g) Fourier transform of w*—Tvanslated Gaussians:

87

The Fourier transform of the measure w" is
( Fw)w) = expl~ iy, ) - W )], (38)

Because of the factor involving the average path g, w" is
said to be a translatied Gaussian measure,

Proof: A remarkable property of the Fourier trans-
form of a measure w on ( is that it can be written
(Fuw)u)= fC exp(-i{u,q)) dw(q), (39)
which is readily recognized as a generalization to in-
finite-dimensional spaces of the familiar formula for the
Fourier transform of a measure in IR" [try, for example,
(1) withn =1, F(x)=exp(-ix)]. This follows from the
definition of the Fourier transform in infinite~dimen-
sional space as found in Bourbaki, ®

From this and (14), we get

(Fw™)(w) = fC exp[~ (v, ¢)] dw™ (q)

11 ¢ —
:exp{é |2, vt - 73

detlf/ . & . —. 2
* deyy (z+§ b,p{/,.}nﬂ)} . (40)
Forn=1, we use (22), which yields
22, bab W35 - W
_ bZ( 1 _ WC_(_V)> — - szzc(M ’_K) (41)
- Welp)  detjy Welp)det i/
S - bWelp,v)
1 _ [% 2
= bill/ i nn =bW121——W’ (42)

The Fourier transform is,
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detH_/
Welu)

oy
(Fuw*)(v) = exp {% {WZ(KI)C;E t—’al;l +

(i~ Ble)) )

1 1 Wiu,v) bW (uw)]
:exP[_ZWC(V)+2 ch(u) - ch(u) - 43

From the expression for the average path given in (26),
we have,

b
v, q) = Wol) fT dv(t)

=bWolu,v)/We(u). (44)

From the expression of the covariance C, given in (30),
we have,

f 1) du @)

T

- n_ Wel, 6:) Wi, 6y K
We, (V)= fT . Cit,t') W o) dvit)dv(i?)
W) - el y) _ det) (45)

Wolu) — dety *

Substituting (44) and (45) into (43) yields the desired
result,

(h) Indefinite functional integrals: We can define an
“indefinite” integral of a functional F{g] with respect to
a Gaussian measure w. on some space of paths (, by
functionally integrating over all paths ¢ such that g(¢)
= g4(f) for all £, where g, is a fixed path in (. One way
to define it would be

G[qolgfttb dt fC Flgly (5;, @) — qo(t)) dwelg),  (48)

where Y(#) is the Heaviside step function, equal to O for
t< 0 and to 1 otherwise, For example, if ( =C_,
Flgl=1, then,

iy dt ©

Glg,]= — u?/2C

[g,] J, N ol j;om expliu?/2C (¢, 1)) du,

(47)
where (1) has been used [u=¢(f)]. Finally,
1" q,(t)

G == dt erfe (—02 3, 48)

lool=3 f e <¢2z'0<t,t)) (

a

Remark: In general, we see that a measure w on an
infinite~-dimensional Hausdorff locally convex topological
vector space E, enables one to integrate over a subset
A of E, even if this subset is not a vector space, by

J, Flalaw], @= [ xala] Flaldw(g)

-
x <fE Xalq] dw(q)) ; (49)
where x,[g]=1 if g€ A and is 0 otherwise. This is how
we integrated over C,,u. As we will see in the next sec-
tion, we can define a measure on “translated subsets,”
such as (C,;. The latter results from adding a nonzerc
constant to each path in a subset of (. {and hence, is
not itself a subset of C_).
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We now slightly change our notation; since we are
primarily concerned with the Feynman integral, the
covariances will be purely imaginary. However, we will
now write them as “C” rather than “iC” so as to ex-
plicitly display the “i” in the formulas.

H1, INTEGRATION OVER THE SPACE OF PATHS
WITH BOTH ENDPOINTS FIXED

Consider first the case of a free particle of mass M.
The covariance on (. that will give us the correct physi-
cal results is, ¥!

C.(t,¢") = (/M) inf(t~1,, '~ 1,), (50)
where “inf” denotes the smaller of the two arguments,

From it, one can use (37) to build the covariance on
Cs- The result is,

At~ t )t~ t")
M(tb— ta)

where F(t,t') +t~ ¢’ =F(t, t') + F(t',t). Both C_ and C,,
are Green functions of the small disturbance operator
for the free particle, ~d?/df*. For simplicity, the sub-
script “C_” will be denoted by “~”. Thus, w,.=w.. The
average path in Cy,, as given by (29), is q,(¢-¢£,)/
{t,~#,). It is interesting to note that lim, . .C,, (/ )
=C_(t, V).

Now let us define integration over the space of paths
where both endpoints are fixed and not necessarily zero.
The path space

Cwo={a onTqt)=a,, a(t)=as}

is obtained by translation by a constant amount g, from
the path space

Co.b-az{q on T‘q(ta)zo: q(tb)=4b’Qa}y
on which we have the Gaussian measure wy,;.,, induced

by w. on (. (see Sec. II). One can naturally define a
measure w,, on (,, by,

fCa F lq] dwqp(q) = fCM_a

This is possible since the system is translationally
invariant (the associated Lagrangian, L =M%, does not
depend explicitly on position). As for the Fourier trans-
form of w,,, since [see (38)]

(}wﬂ,b-a M) = exp[-— i, 60, o) = (2/2) Wab(l-l)]
(where G, 5-o(t) = (@ — g2}t - L)/, - 1,) is the average path

in (y,5-q), then, by setting F[q]_exp(— i{u,q)) in (52),
we get,

Cplt, 1) = Y -t +t~t, {51)

Flx +q,Jawg . (x).  (52)

(53)

(Fwgp) () =expl- i, @) = (G/2) W), (54)
where
TO =To pal) + g, = La6Z 201D (55)
B~ tg

is the average path in (, With respect to w,,. By use of
the characteristic function, we can rewrite (52) as,

Jp Fldldwa@ = [ x[0i9) = @r=40)]

dw,(y)

KB4 (58)

X Fly +q,)
where
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Ky(B,4)= [~ X[(6,,,%) = @y 2:)] dw.0) (57)

is the free particle propagator, ®
of 1) withu=1, F=5:

Ko(B,A) =M/ 2wty —1,) ¥Y(ty - £,)

X expliM{q, - ¢,/ 20, - t,)].

easily cobtained by use

(58)

Let us mention that in the case where the covariances
are real, the functional integral over (,, with co-
variance (51) is equivalent to what is called the “con-
ditional Wiener integral” in the literature [the “regular”
Wiener integral being over (C. with covariance (50)].

This reduction to an integral over (. may, in some
instances, make calculations easier. However, it'is
quite possible to integrate directly over (,,, since wg,
is a well-defined translated Gaussian. This is illu-
sirated below,

Cylindrical functionals on Cas

We seek an analog of (1) for translated Gaussian mea-
sures. It is found that, for an avbitrary Gaussian mea-
sure w,, on (,,, with covariance C({,t'),

f,_ F((Hp‘l);u
C

ab

s <H- n q)) dwnb(q)

- (Czjt_@;/z Ln Flug, ..., t,)
X exp[(i/2) (W) i = a;) ;- a)] duy «oe du,,  (59)
where
(@) (Fwap) ()= exp[- iu, @) - (/2W(W)),
(b) a;=<us, @), (60)

(C)Wij;'W(#e;!lj):fT fr Clt,t)dp{t)du ().

Proof: The proof parallels that of (1), as found in the
second reference,’ the only difference being, that now
the average path is nonzero. We treat the general case
first. Let w be a measure on a path space (, and con-
sider the linear continuous mapping P,:

P,:C =R'by g = u, where u;={u;,q).

Under this mapping, we have,

fC F((ulyq>5 ey <IJ'nsQ>)dw(q)

= [ Flu.... (61)

o) () p (),
where Wp, is the image of w under P,. This image is a
measure in IR". By theorem,® ( Fw) pn(g) = Fwl P (£)],
where £ ¢ IR” and P,, is the transpose mapping from
IR" to M. We have,

(P8), @)= (&, Pul@)) =&, w)=Eu,

=t uy, ) ={Eui, ), (62)
and hence P, (&) = £'u;. Therefore,
Maurice M. Mizrahi 570



(dw)p )= 73 [Fw(Ep))]

du, ove du o

[adad Wit 1N LY

=7y f expl{itiu ;)
r"

X (Fw)(E ) dgt e dET, (63)
when the integral exists. This can be substituted in (61)
in order to convert the path integral over  to an or-
dinary integral over IR". Since w is usually defined by its
Fourier transform Fw(u), which is given explicitly, the
right-hand side of (63) can, at least in principle, be
written in closed form.

Such is the case when (= (,,and w =w,,, as defined
- in (60a). By use of the well-known formula?

f . @(b'u;) exp(- 3Auu,) duy <« du,
R

Jamyn-t 2
= !(lz—ﬂ:lt; @(u) exp (— zu?) du, (64)
clvde R

where c?=b'b7(A™);;, we obtain the result, for ¢(u)
=exp(iu). We emphasize that w,, in (59) is an arbitrary
Gaussian measure on (,,, which means that we have
complete freedom in choosing the covariance C (which
must vanish at ¢, and {,) and the average path g [which
must be in (,,, i.e., such that g(t,) =q,, g(t,) =g,].

Generalized moments formula

It is often useful to know the various moments (e.g.,
of position at different times) with respect to a trans-
lated Gaussian measure. It is found that

fC , Qi @) oos {ltn, @) dit p(q)

=" H,(~ia,/2,...,-1a,/2), {65)
where w,,, a; and [{/;; are defined in (60), #, is the gen-
eralized Hermite polynomial® of order n, and matrix
C;=(@/2)Il/;;, defined by:

HalCixty oo, Cinx®) = (= 1)" exp(C; x'x7)

n

2 .
X Py e exp(- C;x°x7),

(66)

which is a generalization to » dimensions of the Rod-
riguez formula for ordinary Hermite polynomials. One
can show® that /4, indeed depends on x',...,x", only
through the combinations ;%' =X ;. Their explicit ex-
pression is found to be,?

/L/n(‘Xi)EIL/n(Xl’ s ,X")

= kig (— l)k/z 2"-(k/2) Z, X"lXiz ews X.

n-e

C (67)

¢ in-beiin-pe2 Fneiin?

where the first summation symbol denotes the sum over
all even k from k=0 to the largest even number smaller
than or equal to #; and the second summation denotes the
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sum over all different combinations of different indices
i;, where {i,,4;,...,4,}=1{1,2,...,n}; that is, all 4; are
different, and if f{(i,,%,) = flis,;), we count it only once

in the sum. There are (2m — 1)(2m — 3) »+- 5. 3 different

terms in such a sum for n =2m. The first few are:

H1(Xq) =2X;,
Ha(Xy, X,) =4X, X, — 2Cy, (68)
]17/3 (X1, Xz, X3) = 8X1X2X3 - 4C12X3 - 4023X1 -_— 4C31X2.
For example, the first few moments are:

I, @) dwale) = w.3), (692)
fC W, v, @ dwanla) =@, ¢ @, +iW(y, v),

‘ (69b)
fC () v, q) (0, @) dw (@)

= <IJ- )5) <Vy q—> (0"71) + 7/<0':71> W(LL, V)
+ily, ) Wio,u) +iy,y Wy, 0), (69¢)

fC b(ul,q>(uz,q)(ug,q>(u4,q>dwab(q)
= alaza3a4 + W140203 + iW24alas + iW34a1a2
+ il 1054 + iWosa1ay + ill/5100a0 ~ Wiyl 34
= Wasll1a~ Ws1Was-
Proof:
I= J- , xRN, @) dwan(a) = (Fwap)(-2p,)
a

=exp|— = A'u;, 0~ /DW= 1u,)]
= exp[ir‘a; — (i/20 N1l

g

m— =1 v/éab (“’Uq) b <“mq> dwab(q)

‘ A=0

_ e" L AN

= (ax‘ I exp[zx @~ XN -
_ (ANTRNY,

=expl5 W a;a;

9" i ; ;
" [ﬁ exP (‘ 3 V- W) a)]

X[AJ‘ - (W-i)js as]wij)]
=0

= (- 1)"exp[zi({/ ") asa;]

xJexpi- zilh' - (W) a,)
XN = WY a )}

x,L/n[? Y wij(xf_(w-l)”a,)] , (70)
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where we have used definition (66). The result readily
follows.

If p;= 59'.’ then (u,,¢)=4q{t;), a;,=q(t,), Wi;=Clt;, tj)’
and we get the ordinary moments formula for position
at different times (yielding, for example, the various
Feynman diagrams in quantum electrodynamics). On the
vector spaces C =(_or ( = (y, the average path is
zero, and, by using the fact that

Ha0,...,0)
0, ifn is odd,

(- 1)r/2gn/2 sy Ci,1,Ciyi, =+ Ci, iy i 7mis even,
(71)
we get the well-known formula,
fC q(t)a(ty) <o q(t,) dwc(q)
0, if »1is odd,
27 'C(t,-l,t,-z) e Cltyy, 1o by, )y Mm=2m.  (72)

IV. THE SCHRODINGER EQUATION AND PATH
INTEGRALS IN THE NEW FORMULATION: THE
FEYNMAN-KAC FORMULA

Our aim in this section is to show that the propagator
in path integral form, using the new definition, satisfies
the Schrddinger equation. This proof will involve no
series expansions, questionable limiting procedures, or
handwaving arguments about a “midpoint rule. 10

Consider a particle of mass M in one-dimension in a

velocity- independent potential V(g, ¢}, such that,
fm Vig,t) explag?) dg <=, for Re(a)<0. (73)

The measure w,, absorbs the free particle (kinetic ener-
gy) part of the action functional S{g]= [ {(M/2)g*(®)
— Vg(®), )]dt. We are therefore led to write the fol-
lowing theorem (in complete form, including relevant
definitions):

Theorem: The propagator Ky(B,A), or probability

amplitude that the particle at (g,,f,) will arrive at (g,,1,),
can be written in path-integral form as follows:

t

B b
KV(B,A)zKO(B,A)f exp[—%f V(q(t),t)dt]
Cab

ta

deab(q)’ (74)

where K, is the free particle propagator (58) and w,, is

the induced (translated) Gaussian measure on (, defined
as follows:

}wab(“‘)
exp (-1 [* qan0-6/2) [ [ Colt,?)

xdu(t) dut )),

i

(75)
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where the average path g on (, (with respect to w,,) is

t )+qa(tb—t)
ty— 1,

gt~

6(t)zf

Cab

q(t) dw,,(g) = (76)

and the kernel C(t,¢’) is the Green function of the small
disturbance operator for the free particle (i.e., — Md?/
dt*) vanishing at t=¢, and t =1,

Rt - ), — t')
M(t,—t,)

Ky can be shown, from its path integral form (74), to
satisfy the Schrodinger equation at B, i.e.,

Cuplt, t) = Y —t)+t~t. (17)

" K
WY Teqh

=—ilbd(gs—4q,) 0, —t,), (78)

and its complex conjugate at A. (74) is the well-known
Feynman—Kac formula'! in disguise. The proof pre-
sented here through Fourier transforms is very different
from Kac’s proof, where he used the usual time-slicing
definition of Wiener measure. Qur proof does not seem
to require his assumption that the potential is bounded. !?

Proof: The normalization factor in (74) is equal to the
free particle propagator because when V=0, we want
K, =K,, and also so that when ¢,—~t,, Ky —8(g,—q,); 2
condition that K, satisfies. We now show directly that
(74) satisfies the Schrédinger equation (78).

Let us write K, =KyJ, where J is the path integral.
As we take derivatives of (74), we must remember: (a)
that the measure w,, itself depends on {, and g, through
g and C,,, (b) that we consider only the explicit depen-
dence on t, and g,. For example, we have (3/38t,)

% vlq@), tdt = Vig,, t,), even though there is an im-
plicit dependence on £, in V{g(t), ], since all paths ¢ are
such that q(,) =q,

For Lagrangians of the type considered here, ordinary
differentiation commutes with path integration in our ex-
pressions. Thus, we have,

oKy n? Ky
—in at +V(Qb7tb)KV_ oM Tq{

=—if —(LJ-mK0
3t,

-
XKOJ—iﬁKOf (

ab

Vidn b }J+V(q,,, )

f ’ V[q(t),[]dt)

' K 7 3K,
t dwasld) = 557 = I3 3g
i [ 3
<[ el [ Viaw,0a) o dusta
ab ta
t
ﬁZ i b
—E—JVTKOX'[ exp(—-ﬁ;f V[q(t),t]dt>
R ab tq
2
X g s @) (19)
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The terms proportional to V(g,,£,) on the right hand side
cancel, and since K|, is itself a Green function, we have:

K, n K ) )
- 0 __ _ B
( i 3,  2M g gy — q,) 5ty — )

= - 171'5(‘11; - qa) 6(tb - ta)- (80)

Further, from (58) we have

3Ky _ MWy da)
aqb n (tb - ta)

Therefore, what remains to be shown is that

f exp <— %/ * Vig(t),t]dt )

ab

ER

-~ qdy— qa i
( iff in oM E%

atb to—1i, 04y ) d1way(q) =0

(81)
Before we can proceed, we must define what we mean
by an operator qu or D, acting on the measure w,,. It
is natural to do this through Fourier transforms. We
have the property

Fopl)= [ dus@epi-i [TqOdu@).  62)

This enables us to define quwab by

[ 7(Da,000)] (1) = Do, ( Fwap) (1), (83)
since the integrand in (82) does not contain ¢, explicitly
(it is assumed that qu is linear). This integrand does
contain ¢{,, however, so for D,b we must look further.
We will need the following derivatives:

a ,
a_t:Cab(t,t)
n-t )t -1t,) I .
= el Toe © '
M~ 1) (note»that itis C” in ¢ and t')
Gl n_ A = {t-t)gy—4qd)
3q, Calt, 1) =0, YA Q(l)———(tb—_—az*—
9
aq,, t

atb[ f Calt, 1) dp(t)dp(t")

ty rty 3

Sk
tg g

In the last formula, we used Leibnitz’s formula for dif-
ferentiating an integral, i.e.,

Cusll, t')] du®dplt).  (89)

d B(x)

ax flx, t)ydt

alx)

B(x)
_ f D a1+ fx, b0 8 ) - £l 2] o' @).
alx) (85)
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In our case, the integrated terms vanish on account of
Cab(tb? t) = 0) cab(t,) tb) =0

We now want to define dw,,/3t,. The easiest is to dif-
ferentiate the two equivalent expressions of the Fourier
transform of w,, with respect to #,. Using (82) and (75),
we have:

0=L exp (—z’ f'b q(t)dp(t)) dw ., {(q)

ot
b Cub ty

ty
- exp<—i f q(t)du(t)
ta

I
= [ f exp(- i, 0)) 7

ad

t
_z[g- f ' q(t)du(t)] Feo (i)

a

3 ortaC ()
(z-at—bf q(tdu(t——ff 5,

Xd () dys (t')) Fwanlis).

Note that we have taken (a/atb)f o q()du(t), outside the
path integral because it does not depend on the path g. It
depends only on the intergrand at {,, and ¢{f;) =g, is con-
stant. Using formulas (84), we have

Carlt, 1') du (1) d. (t'))

o )|

‘ ty o~
% b[q(t)—ﬁ(t)]du(t):_j; g%(;t_) 200
_ @e—q) [
B mft (t=ta) du (D).
(87
Finally,
}(Bi )(u)‘(%) S(u) - %Z_S (u))
X },wab(p-)y (88)
where
S(U-)Efttb (t=t)du(e). )

a

In the general case, if y is a regular measure [du(t)
=i(f)dl, where {i is an integrable function], then,

(%) (u):(a% iy ) T (90)

Taking (83) and (88) into account, we conclude, with the
aid of formulas (84), that

o 0 ihlgy-q) 3 # @
7[("” % i-1, aqb‘WaTzE)"’“”] (w)=0.
(1)

Assuming that the only measure with a vanishing Fourier
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transform is the zero measure, we conclude that (81) is
satisfied and that {74) does indeed satisfy Schrédinger’s
equation. Alternatively, this proof can be regarded as a
derivation of Schridinger’s equation from the path
integral in a manner not involving a limiting process.

(91) can be regarded in a sense as a “differential
equation” for the measure w,,. A curious fact is that for
q4,=qs (e.g., on the vector space (), the measure it-
self “satisfies” the Schrddinger equation for the free
particle!

By expanding the exponential in (74), one obtains a
perturbation expansion where each term can be reduced
to an ordinary definite integral of V by using (59). The
time integral can be evaluated in closed form, even in
three dimensions. " If the potential V(g) is a polynomial
in g, the generalized moments formula can immediately
be applied to calculate all the terms explicitly. An ex-
ample, the propagator for a particle in a constant force
field, is worked out in Appendix B.

One is not restricted to the “free particle” measure
W, used in this paper. It is usually more fruitful to ab-
sorb the quadratic portion of the potential (or, more
generally, of the action functional expanded about a
classical path) into the measure, which yields a new
Gaussian measure whose elements are closely related
to the equation for small disturbances of the system.
This results in much improved series expansions for
the propagator (e.g., WKB expansions). This technique
will be presented in a subsequent paper.
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APPENDIX A: METHOD OF RESERVATION OF
VARIABLES

The method described in Section II for integration over
subsets of (. is essentially what was called the method
of “reservation of variables” by Siegel and Burke. * It
was used by Feynman and Hibbs '* to calculate partition
functions in statistical mechanics. They assigned the
average {g(t)) of the path ¢ the fixed value b,

1
<§—L’Q>E’T_ fT q(t)d*t:b)

then, after performing the path integrals, integrated
over all possible values of . This reads, in our
notation [see (13)],

f Flg)dw.(q)

R

The Fourier transform of w, is given by (38). The path
integral expression (74) of the propagator, together with
(56) gives:

exp[ib®/2W._(u)]

d .
L [ Flg)dw, (@)
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Ky=K, | db explib®/2W ()] [2riW.(u)]"/?
< Jr X, ) - @o- )
X exp(- i fT vig(t) +q,]dt) dw,(q).

If we expand the potential around b,
Vig() + 4.l
=V(b) +[q(t) +q,- ]V (B) +3[q(t) +q,— b V"' (B) + +e-
and integrate over 7, the second term is just the con-

stant q,TV'(h). This is why we chose this particular u.
We are now left with:

Ky =K, exp{- T[V(b) +¢,V'(0)]}
exp[ib’/2W_()] — (g, -
xj;db e /Cux[(égb,q) @~ 4q,)]
© (n)
xdw,(q) exp(—ig; L

X fT [q(t) +q,- BT dt).

This is best suited for polynomial potentials, for
which the series over » terminates. One can then ex-
pand the exponential in the path integral, and, by using
the moments formula, obtain a nonperturbative series
expansion,

APPENDIX B; PARTICLE IN A CONSTANT FORCE
FIELD

As an illustration of (74), we can compute the prop-
agator for a particle of mass M in a constant force field,
with potential

Vig)=-1q,

f being a constant. It is:

K(B,4)=Ky(B,A) j- exp(if [ q(t)dD)dwalq)
= K f2miW,, W)]1/* fn du

X explifu/T +i(u— a)2/2W,(M)]
=K, exp((- i/ 2)W o, (V) f 2 + (/7) af ],
where A is the Lebesgue measure, [dA(t) =dt],

a= <>‘; ‘7>: fT a(t)dt = %(qa +qb)(tb'— ta)y

W,(2) is the variance associated with the covariance
Cg in (77), and K, is the free propagator (58). The
result is,

K(B,A)=VM/2mikT exp(iS./H),

where S, is the classical action, °

¢ _M@-q)® | [Tay+d) _ [T°
¢ 27 2 24M
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The higher order corrections to geometrical optics are studied in general relativity for an electromagnetic
test wave. An explicit expression is found for the average energy-momentum tensor which takes into
account the first-order corrections. Finally the first-order corrections to the well-known area-intensity law

of geometrical optics are derived.

1. INTRODUCTION

The aim of this paper is to display some effect of the
space—time curvature upon the propagation of a high-
frequency electromagnetic test wave,

It is a well-known result 2 that, in the geometrical
optics approximation, an electromagnetic wave posses-
ses an average energy—momentum tensor of the form
of a null fluid (the averaging is over many periods of
the wave). Such a form for the energy—momentum ten-
sor means that, in this approximation, we deal with a
directed flow of radiation, i.e., the wave carries ener-
gy only along the propagation vector. This property is
of constant use in relativistic astrophysics (e.g., when
dealing with radiation emitted near a black hole) or in
cosmology (e.g., when dealing with radiation
propagating over cosmological distances).

It is therefore of some interest to investigate the
deviations occurring when one considers the first-order
corrections to geometrical optics.

The geometrical optics field is usually defined as
the first term in an appropriate expansion of the elec-
tromagnetic field in inverse powers of the frequency. In
this paper we shall investigate ® the nature of the first-
order corrections to the geometrical optics field.

In Sec. 2 we set up the basic techniques for geometri-
cal optics in general relativity. The main ideas are
essentially due to Ehlers. ! However our treatment dif-
fers from Ehlers’ in the following points: (i} we adopt
the Newman—Penrose? formalism, which enables us to
write explicitly the equations satisfied by all the higher
order corrections to the geometrical optics field, and
(i1) we check the consistency of the set of recursive
equations we have obtained.

In Sec. 3 we investigate the structure of the energy—
momentum tensor when the first-order corrections are
taken into account. The latter corrections cause the
energy momentum tensor to differ from that of a
directed flow of radiation. In particular we find that
there is diffusion of the wave. This can be interpreted
physically as arising in part from the continuous back-
scattering of the wave off the space—time curvature.

In Sec. 4 we consider the corrections induced in the
well-known area-intensity law of geometrical optics.
An explicit formula is derived for the deviations from
this law, which could be of importance for cosmology
and relativistic astrophysics.
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Finally in Sec. 5 we discuss in detail a simple ex-
ample and conclusions are drawn.

Notation: Latin indices a, b, *++, generally run over
the four space-time coordinates labels 0,1, 2, 3.

Capital Latin indices A, B,A’, B, *--, indicate spinor
indices and run over 0,0/,1,1°,

The metric signature is taken to be - 2.

Units are such that the velocity of light ¢ and the
gravitational constant G are equal to 1, ¢ =G =1.

Symmetrization of indices is indicated by ( ), anti-
symmetrization by [ ]. Ordinary derivatives are in-
dicated by 9, or a comma, covariant derivatives by V,
or a semicolon. { ) denotes averaging with respect to a
statistical ensemble.

2. GENERAL FORMALISM
In this section we shall employ the notation of New-
man and Penrose,’

In the spinor formalism the Maxwell equations in
vacuo are®

VAA'("[)AB:O, (1)
where ¢, is the spinor equivalent of the Maxwell

bivector G,.!

In this formalism Ehlers’ ansatz! reads

© {(n) L (n}
an=expliwS ()] 2y w7 K 45(x) + expl— iwS ()] 2y 0" Las(),

(2)

where the expansion in (2) is interpreted as an asymp-
totic series in w™!.% w is a large parameter to be in-
terpreted as the frequency of the wave. The phage Sx)
is a scalar function of the space—time point x. gla(x)
and EAB(x) are symmetric spinor fields in space~time.
Inserting (2) into (1) we obtain

. ) . L0)

(VAY SYK 45 =0, (VA*S)L =0, 3)

vA R i (vAvs) R, =0, (4a)
. (n+1)

vae P i(vA ) T op=0. (4b)

Let us write [, =V,S and define the rays as those curves
x*=x%(r) having I as tangent vector,

Copyright © 1976 American Institute of Physics 576



dx®
dr

Then, from (3) it is shown in the usual way *® that [°
=0 and [,V°l,=0. Therefore the rays form a twist-free
congruence of null geodesics (» being an affine param-
eter along such null geodesics). ' S is therefore a null
hypersurface, Let 04 be the spinor equivalent of the null

vector 1. From (3) it is easily shown that
) o

Kup OA:LABOA=O: (5)
stating that the zeroth order field is a null field having
the propagation vector I? as principal null vector. This
field is defined to be the geometrical optics field,' Now
let us choose a spinor basis ¢, !4 such that

04lt=1,

.

which we parallelly propagate along the rays
DOA = DZA = 0,
where D=1V,

Then it is easily seen that one has e=k=n1=0, p=p,
and =0+ B, where€, «, 7, p, T, @, 8 are spin-co-
efficients defined in the paper by Newman and Penrose.*

)
Now we project the spinor fields %Aa and ap into the
spinor basis 0,, 1,. Let us write, forn=0,

n ( m, ), ),
XAB =4 0,05+B"0,lp+B'1,04 +6+ZAZB’
m m (n). ) tn)
LAB:A OAOB+B OAlB+BlAOB+ClAZB'

Then it is easily seen that (4) yields the following sets
of recursive equations:

(n}) _(n (n) (n)
DB -5 1 208 + 22 =0, (6a)
(n} (n) {n {n}
DA - pdt 438 A oo, (6b)
(nel) (M) (n)

—iC* oA - 5B
(n n n
- A 4 218+ 2y - W& =0, (6¢)

_(n+1) ("l (’l)‘
IB "+ 8AT+ (-~ T+28)A

{n n n
+aB o B <o, (6d)
{(n) {n) (n) {n)
-DB -8C +2pB +20C"=0, (7a)
(n) (n) (n) (n)
DA -pA~+8B +2(C =0, (b}
(n+l) (n) (m) ) (n) (n)
i CC+0A -8B -AC +2TB +(2y-u)C =0, (7c)

(n+1) (n) (n) ) (n) (
-z'"f;‘+5ﬁ'+(-T+26)/’i'+A(1"3'+2pé"+vc":)‘=0, (7d)

where the symbols D, 5, 5, A and the spin coefficients
p, @, A, T, ¥, 0, 4, V, B have the meaning employed
in the paper by Newman and Penrose. *

The terms containing (I?AB represent a right-}landed
polarized wave, whereas the terms containing )AB rep-
resent a left-handed polarized wave. From Egs. (8) and
(7) we see that all the states of polarization decouple to
all orders, Therefore, hereafter we shall consider only
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the set of Eqs. (6), dropping the upper plus®’ wherever
unnecessary.

Now we ask ourselves how the arbritrariness in the
?t}og:)e ong the spinor basis is reflected in tr:‘e quantities

, B, & 1tis easily seen that the basis 04, 14 is fixed
up to the transformation

04— exp(iM) 04,
1* — exp(~ iM)1* + No*, (8)

where M is a scalar real field and N a complex scalar
field such that DA7=DN=0 (in order to preserve Do*

=DI*=0). Itis aP areng ?hat under the transformation
(8) the quantities /ﬁ ﬁ: ¢ change according to

(n)

L m ) ()
A —~exp(—2iM)A - 2 exp(— iM)NB + N°C,

m L m m
B—exp(-iM)B-NC,

E~ exp2im) & @)

The solution (2), together with Eqs. (6) and (7), enables
us to solve the initial value problem for the Egs. (1). 17
Let A be(% hypersurface which does not contain the rays.
We give A o(n)the glypersurface H. From Eq. (3) it is ap-
parent tha(%) =) =0. Hence Eq. (6b) together with the
condition B=C =0, yields A‘® everywhere in a normal
neighborhood D of thy ,initial hypersurface. Then (6¢c)
and (6d)n)gi\(rne B and C everywhere in D. By iteration we
obtain A, B), everywhere innl)),(nl\lov(vn the question
arises whether the values for A, B) , C obtained in such
a way do in fact satisfy Eq. (6a). It has been proved by
Ehlers! that if the series (2), as well as its derivatives,
converge uniformly in D, then Eq. (6a) is automatically
satisfied. It is well-known?® that even when it is not
convergent the series (2) provides a good approximation
to the Maxwell fields in the case in which it converges
asymptotically. It is then of some interest, in the latter
case, to enquire under which conditions the set of Egs.
(6) is self-consistent.

In Appendix A we prove the following theorem.

Theorem: For a general background Lorentz metric
the equations of system (6) are consistent.

Having set up a self-consistent approximation scheme
for geometrical optics, in the next section we turn to
some questions of physical interpretation.

3. THE AVERAGED ENERGY-MOMENTUM TENSOR

In this section we investigate the energy—momentum
tensor of the electromagnetic field up to the first-order
corrections to the geometrical optics field. In terms of
the complex self-dual Maxwell divector G,;, the energy—
momentum tensor of the electromagnetic field reads

T = 3G G + G, GP™). (10}
The spinor equivalent of T,” is

Tan®% == 30,00 (11
Now let us write

¢ 47 = exp(iwS)K 4@ + exp(— iwS)L %, (12)

where
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ad e & il
KP=23 0 Ry, LaP=25 0lip (13)
Also, let us put
0,458 =K,?K % +L,2L .7, (14)

ZanP? =exp(2iwS)K PL 5 + exp(~ 2iwS)L ,°K . %' .

(15)
Then we can write

Tap®® == 3[04 %% + 2,457 ] (16)
Next we average out to zero the rapidly oscillating terms
of the kind exp(zx 2{wS)F. This averaging is to be in-
terpreted as an “ensemble” averaging: That is, at each
space—time point we average over many realizations of
the radiation field. Via a suitable ergodic hypothesis it
should correspond physically to averaging over a time
which is long compared to the period of the wave, but
much shorter than the characteristic time of change of

the gravitational field.
By averaging Z,,.2%" we obtain

(Zaa %) =0,

hence
(TAArBBI>:— 3044 7%, 1)
Next let us consider the conservation equations,
VAA’ TAA' BB* —— %[VAA' OAA‘ BB* + VAA' EAA'EB’] —=0.
(18)

By averaging (18), since (VA4 =, .78 =0 we obtain

(VvA%0, . 77) =0, (19)

Since the averaging we consider commutes with space—
time differentiation, we can write

VAT B =0, (20)

We have therefore constructed a conserved averaged
energy—momentum tensor for the radiation field de-
fined by Eq. (2).

From (20) it is apparent that the tensor {T 4, 2%') is
conserved to all orders in 1/w. We have then to check
the consistency of the conservation equations with our
approximation scheme. In Appendix B we prove that
Egs. (19) or (20) are satisfied to all orders in 1/w as a
consequence of the recursive set of Egs. (3) and (4).

An inspection of Eq. (14) shows that to all orders in
1/w, in the averaged energy—momentum tensor, left-
handed and right-handed polarizations decouple. There-
fore, in the following, we shall consider only one kind
of polarization. The zeroth-order averaged energy—

momentum tensor is given by

P se LT

< AA >:‘§<KA A? > (21)
©

( )
From Eqgs. (8) we have }0{)‘45:73 0408, and DA—-pA=0.
Hence it is easily shown that

0) . 0y .
D<TAA'BB >:2p<TAA'BE ) (22)
W g
Now let us look at (T ,,.%% ). We have
) ) D a ) g (D) g
(T g0 28 )=~ é(‘}’?fﬁ), B +§%ABKA.B ) (23)
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w ,
Now we project (T ,,.%%") onto the spinor basis 04, 14 +°
From the symmetry of (T,,), the vanishing of its trace,
and the relation

Eor=o,

which is easilly verified from representation (23), we
deduce that ((T)a,,> has only five independent real com-
ponents, Similarly we find that (T)AA.BB') has only three
independent components in the spinor basis {0 4,14}:
Two of them are complex and the other is real. These
are given by

(24)

1) —rp =2 )
H=AT gpaep) 040 B¢ == LA, (25a)
1) — e 0w
TM={(T 450 p )14 0PI¥ 1% = 3(A B), (25b)
) — O D @)
W =(T ppar g BB 1% =~ (A A + AA), (25¢)
)y ) 1)
where A, B, and C satisfy
(1) 1)y _ 1
DA-pA+3B+rC=0, (26a)
(
(&=, (26b)
(D () ()
iB=(1-2B)A - 5A. (26¢)

The spinor basis {04,124} has been fixed up to trans-
formation (8). Therefore the quantities H,II, and W are
subject to the following transformations [which can be
easily derived from Eq. (9)]:

H—exp(4iM)H, TI— exp(iM) Il - N exp(2iM)H,
W— W +4 exp(~ iM)NTT

27)

+ 4 exp(iM)NTI + 2N? exp(— 2iM) + 2N% exp(2iM)H.

From Eq. (27) it is easily seen that H can be made real
and II made to vanish at a point by a suitable choice of
M and N. Furthermore, since the latter quantities are
constrained only to satisfy DM =DN =0, this can be
done all over a hypersurface given by » = constant.
Therefore the physical status of the quantities #, II,
and W requires further elucidation. In order to come to
grips with the problem of physical interpretation we
proceed as follows.

We introduce an observer O with normalized 4-ve-
locity u®, u®u,=1. Then at any point P along the world-
line I" of observer O we have two given vectors, u® and
1, Now out of these two vectors we construct an or-
thonormal frame and a null frame. Let 2=/, then
wQ=w(lu® is the frequency of the wave as measured by

observer O with 4-velocity u°,

First we define a spacelike unit vector v,, represen-
ting the wave’s propagation vector in the 3-rest-frame
of the observer. We have

v, =(1/9)1, - Qu,. (28a)
Obviously v v*=-1, vu®=0.

From the vectors [¢, u* we also form a null vector #*,

defined by
n, :ua/Q - ZE/ZQZ. (28b)

Obviously nn*=0, nl°=1.
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Next we choose two spacelike unit vectors(e)a s g.; or-
thogonal both to #* and to v°, i.e.,

a__ a__ a__ a __

S =Y =8 =67 =0. (28¢)
Finally we define two complex null vectors by
n,=Q/V2 e, + i e, ng=1/V2 ) e,~iey). (28d)

at o al @

Then it is immediate that the vectors u®,v?, ¢°, e°

form an orthonormal frame attached to observer O,
while I*, 1%, m°, m® form a null frame at the same space—
time point Pe I'. Now we repeat this construction at
each point of I" and then we parallelly propagate the null
frame so obtained along the rays, assuming that each
ray cuts I" only once. In this way we obtain a null frame
1*,n%, m®, m® or equivalently a spinor basis 0*,1%%° de-
fined at each point of the congruence and satisfying Do
=Dl*=0. Therefore our former analysis applies, with
the spin coefficients and the derivative operators ap-
propriate to this null frame. Now, however, the ar-
bitrariness in the definitions of o4, and 7* is more re-
stricted. In fact, along I', both »* and I* are given vec-
tors, subject to no arbitrariness. Hence, along T', o#
and I* are determined up to the transformation

o*— exp(iM)o?, 1*- exp(—iM)*, (29)

where M is an arbitrary function of P T, Since {04,174}
is defined at each point of the congruence by parallel

The energy—density is

(0) W) )
=- <Tab>u U’ = 2<’A |Z>QZ

since the metric signature is - 2.

(
The energy—flow vector 1Sq( = e“(f) wu’, a=1,2,3

and we have q()1)~¢(1):2) =0, whereas"
0) o
=3 A |Ht=E
3

Therefore the energy flows in the direction v*, which
is the propagation vector of the wave in the rest frame
of observer O, The pressure tensor is defined by

)

© == 2% Tab} e
(@) (B) (a)

o
The only nonzero component of g(a)(ﬁ,is

) Q) {0)
=3(|A Bt =E.
(33

Therefore the pressure is exerted only in the direction
of propagation, v*, of the wave.

()
Now let us consider the same quantities for (T,,). We
have

1) (8% o b
E =- (Tab>u u

propagation off I', it follows that such a spinor basis is 3 e b i
determined up to the transformations (9), with M subject == axX %“”M w=— W, (31)
to DM =0. Also it follows that H, Tl and W are subject Fro a >_ (T Y have
to the transformation (27) with N=0, i.e., m g =g (Lo’ we hav
H—exp(4iM)H, T — expGM)II, W—W. ({}):_%92“,
In order to gain more insight into the physical nature 2;
of I, H, and W we project the averaged energy—momen- q =(1/V2 Ha(m -1, (32)
tum tensor onto the orthonormal frame {u®, 1° “ "} @
From Eq. (21) we have for the zeroth-order averaged 4 =1/V2)em +1I),
energy—momentum tensor i
() N ) and f
(T == 3|4 1,1, (30 Terom
(1 (>
Given the orthonormal frame {u®, e“ et (z:} with e (3 0 =-e"(T,pe’
=v* and the tensor {7,,) we can compute t’he energy— ey () 8
flow vector, the pressures, and the energy—density.? we obtain
!
(1 L + ) e y _ n s _
== + R 0 = - 21 - R =
e 2 (@) (1/20){H ~ H) (1?(3) (©@/¥2) @+ 1)
) ) ) 1 — (1) . —
@ ey (2?(2) =z +H), (z?m = (@/iV2)( - 1) (33)
() m 1) > (
6 = 08 |, 6 = 6 , é) =~ W
G (1B @y @3 333
—

We see that the total energy—density measured by the
observer is

E= s (/)B4 |5 - 1/w)W],

and the total energy—flux in the »* direction is

g):gmm‘ff 1) - (1/w)W].
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Also, the total pressure on a 2-screen orthogonal to the
3-direction is

6 =30
(3)(3)

WA D= 2wy,

We see that, along the propagation direction of the
wave, the energy—density, the energy—flux, and the
pressure relate to each other as for the zeroth-order
pure geometrical optics field.
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Now if we apply transformations (29) at any point we
see that we can make Il =1I, by a rotation through an
angle M, of the vectors (e“, (g‘; in the 2-plane orthogonal
to the wave’s propagation direction v°. Also, through
a rotation of an angle /2 - M, we can make IT+ i =0.
Similarly we can make H=H and H + H=0 through ro-
tations of angles M, and 7/2 - M, respectively.

Therefore it is possible at a chosen point to rotate the
vectors g‘)‘, ((g‘; in such way as to set alternatively

(1)
b =0,
(2)(3)

't W) Y
q =0and 6 =0, or g =0 and
) (EEY) @

or

) © )
Win = @iy =Y Or

Il

0
(13(2)

They correspond to some directions in the plane along
which there is no energy—flux or no pressure is exerted
by the radiation field.

Since all these possibilities are mutually exclusive,
it follows that, correct to the first-order, the wave has
energy flows in directions orthogonal to the wave’s
propagation vector, as well as anisotropic stresses. We
interpret this as diffusion of the wave. Such effect is
potentially of astrophysical and cosmological interest.
In the next section we focus on a point which is important
when treating the propagation of radiation in a gravita-
tional field, the area-intensity law.

This law is sometimes postulated a priori in the old
treatments of geometrical optics?; where the existence
of “rays” and the propagation of the radiation along them
is not deduced from Maxwell’s theory, but is assumed
as a theory per se.

In modern treatments of geometrical optics® the area-
intengity law is easily shown to be a congﬁquence of Eq.
(30) for the energy—momentum tensor (7, of the
zeroth-order field. In the next section we investigate
the deviations from the area-intensity law caused by the
inclusion of first-order terms in the energy—momentum
tensor.

4. THE AREA-INTENSITY LAW
Let us recall briefly how the area-intensity law is
derived for the zeroth-order geometrical optics field.?

©)
We have for the zeroth-order intensity, I, as mea-
sured by an observer with 4-velocity u°,

o 0
I =(T,u",

and we assume that »° is parallelly propagated along

the rays

Du®=0 (34)

which, in conjunction with DI°=0, means that @ =u°l,
is constant along the rays, i.e., we restrict ourselves
to those observers who measure the same frequency.

Equation (34) also implies
DU“ =0.
Equation (22) states

(35)
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(0)

DTy =20(T. (36)

Let ¥ be the area of the cross section of the bundle of
rays we are considering, then?

DT =~ 2p3%. 37
From Egs. 34—37 we obtain
(0
p(I’s)=0, (38)

which says that (3)2 is constant along the rays for all
those observers who measure the same frequency of the
radiation. Now let us look at the first-order corrections
in 1/w to Eq. (38).

The average energy—flux correct to the first-order,
is

() ()
IT= (T puv" + (1/w) (T u®. (39)
The quantity of interest here is
Dz,
We have
D(Z)=~2p3I+3ZDI. (40)
W W 5
Let us write 7 =(7,,)u*v°. Then
(0 NES
I=1+ (l/w)I s
(0) , 1)
DI=DI +(1/w)DI .
Hence
, SSIR R
DUIZ)=(1/w)=(~-2pI +DI). (41)
(1 L2
From (32) we have 1 = g = -~ 3Q°W where
(3
@I O
W=-(AA+AA).
We can write
DUZ) =~ (1/2w)Q2*s (- 2pW+ DW),
After some easy manipulations one obtains
5 SADO
D{Z) = - (/20)5{ (A A (258 - 57 - A0) @)

- AR + XD+ c.c.d

We remark that the above expression is invariant under
the allowed transformations (29).

Bearing in mind the application of this formalism to
astrophysics, we find it useful to express Eq. (42) in
terms of initial data on a hypersurface / which each
ray cuis only once.

Let the hypersu{face A be given by the equation »
=¥y = constant. satisfies the equation
0) Wy W)
DA =34 /or = pA
the solution of which is

)

A=pe®, F=[ pw)dr. (43)
4]

)
P is the initial value of A on the hypersurface #, P is
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a function of three variables only, i.e., DP=03P/3r =0.
With the help of (43), Eq. (42) can be rewritten in the
form

DUE) = — (22/20)5i(A A {258 - 57— 268 + 67
+ (28— T)8F — (2B-T)6F + 56 F — §0F - A0

+ AT} - —2% Tiexp(2F){(28~ T{PTP) - (2B-T)

x (P&P) + (P56P) + (P5P)oF + (POP)6F

~ (P56P) - (P5P)6F — (PSP)SF . (44)
W) ()

«o,Now we recognize 1 —100 (A, Also we have that

f ¥ is constant along the rays. Let us write 9 Z=f

=constant along the rays. Then, using the commutation

relation

58F — 66F = (i — w)DF - (@ - B)OF — (B— a)6F,

we obtain

D) =— (i/w)f{8B8~ da - 68+ b6a + (1 ~ ulp
+X0 -0 +2(8—a)oF ~ 2(B— a)oF}

- %- Tiexp(2F) {(28- 1) (PbP) - (2B-T)

X {PsP) + (PFSP) + (PSP)TF + (P5P)6F

— (P&3P) - (PSP)5F ~ (PSP)oF}. (45)
Equation (45) is the main formula of this section ex-
pressing the deviation from the area-intensity law in
terms of geometrical quantities associated to the null
congruence and of the initial values over the hyper-
surface H:v=v,.

We remark that the quantities {P5P}, (P66P), convey
information not only about the intensity distribution over
# but also about the polarization and the coherence
state of the radiation over # (since P is a complex
quantity).

In astrophysical situations it is perhaps convenient
to characterize the initial values of the field by means
of its complex coherence!® on /4. We define

T@,y)=(Py)Pr"))=T0",y),

where v, v'e 4.

(46)

Then I'(y,v’) embodies all the information contained
in the intensity, polarization state, and coherence
properties of the zeroth-order radiation field over 4.
In terms of I'(y,»’) it is, in principle, possible to com-
pute the quantities (P§P) and {P55P). In fact, Since the
averaging we adopted is with respect to an “ensemble, ”
we have that averaging commutes with the derivative
operators D, 5,5, A. It follows that

(PSP)=lim 6, (y’,y)
¥y
<P6—5_};>: 5'12}] Gyogy: F(v:’y)

where éy,5y. mean derivatives with respect to the
coordinates y’.
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5. A SIMPLE EXAMPLE

In this section we treat in detail a somewhat idealized
but easily tractable example.

We consider radiation propagating along the radial
outgoing null geodesics in the Schwarzschild metric,
i.e.,
ds?=(1-2M/v)dt*

- (1 - 2M/7) L dr? - ¥2{de® + sin®0d¢?). (47)

The phase S is then given by
S—=f—*, v*=r+2MIn[(r/2M)-1],
and 7 is an affine parameter along such null geodesics.

At each point along a geodesic we choose the following
null vectors

P=[(1-2M/7)", 1, 0, 0]

n®=3[1, - 1-2M/7), 0, 0] (48)

m*=(1/v2)[0, 0, 1/, i/r sinf]

Then it is easy to see that (I%,»%,m®, m®) is a null tetrad
and DI*=Dn®=Dm®=0.

Therefore the analysis of Sec. 2 applies. Before un-
dertaking such an analysis we list the spin coefficients,
the derivative operators and the metric components for
the tetral field (48). The nonvanishing spin coefficients
are

p==1/7, B:—a:cotO/Z\/fr,
y=M/2¢% pL=-(1/2r)(1-2M/7).

(49)

The explicit form for the tetrad derivative operators is

—9y _ 2&)'11 9
D_la"_<— ¥ 5 "

-1
zz(l_m) 2
[ do

(50)

1 bl 7 a3
=%, =— | — + ——— —
0= =15 [ae  sing a¢]
where v =¢ +v* is the advanced time.

The only nonvanishing component of the Weyl tensor
is

vy =M/2r" (51)
Finally, the metric functions? are
oyt — _ L(1 - 2M
w=X"=0, U 2(1 2”/") (52)

£#=1/V2r, £°=i/V2% sinb.

Let the hypersurface # be given by v =#,, 7,>2M. We
have for the zeroth order term

{0} (0}
DA +(1/7)A =0. (53)

(ny (m) (n)
We assume the quantities A, B, C to be stationary.

Then the solution of (53) is

A.M. Anile 581



0)
A =P8, $)/7, (54)

with P(8, ¢) an arbitrary function on the sphere. For the
sake of simplicity we consider the case P =constant.
Then it is easily seen that

6V} 0) )
B=2ifA —8A = (EP/V2 v} cots. (55)

) o STENSY)
A satisfies the equation DA — pA +3 B =0. As initial
condition on // we choose, forn>1, A=0 for r =#. It
follows that

)

A =— (i/2sin’g) P/+°, (58)
To these we add, as a consequence of =0,

1)

¢—o (57)

We remark that the higher-order corrections destroy
the spherical symmetry of the zeroth order field. This
is due to the nonexistence of monopole electromagnetic
radiation.

From Eqgs. (55)—(57) we see that in the first-order
corrections there is no curvature-induced term. There-
fore in this case the first-order corrections arise be-
cause the wave is not exactly spherical, i.e., they are
“near zone effects.”

In the particular example we are discussing all the
higher-order corrections can be obtained in a c}’c'))se L
form. In fact it is easy to co(m)/ince oneself t"}}at B;A
=0, for n = 2. Furthermore ¢is given by i =1/2v
+ 51 - 2M /7)aC /v for n = 2, with

o ®/2r% 1/ sin%6.

From the above formulas one sees that the curvature
induced terms start to appear in C.

Now we discuss the averaged energy—momentum ten-
sor corrected to the first-order.

From the two null vectors I°, »°, one can construct
the timelike unit vector

wW=1/¥2 (1°+n%, (57a)

which corresponds to the normalization 2=1/V2 in
(28b). The observer having u® as 4-velocity, sees the
radiation propagating in the direction of the spacelike
unit vector

APPENDIX A

In this appendix we shall prove the following theorem.

Vi =(1/V2)(1° - n%). (57b)
We obtain an orthonormal tetrad defining the two vectors

5: =(1/V2)m®+m?), &= (1/V2)(m® = m9.

Then, with respect to this orthonormal tetrad, we com-
pute the energy—density, the energy—flows, and the
pressure of the radiation field, corrected to the first-
order. One has

H=W =0, n:(z‘/Zx/z_)cote/rdifx) [%.

Hence
i =0, P =a/cotor/a, ¥ =o,
3) 2) (1)
0 0 0

a
9> 1o 0 cotff
(a)(8)

cotff

F2Y

Because (21) =0, we find D(IZ)=0. This can also be check-
ed? by difect substitution in (45).

We conclude this example by a physical interpreta-
tion of the observer defined by (57a). It is an observer
moving radially outward with the velocity dr/ds
=(1/Y2)(3 + M/7) relative to a static observer and seeing
the radiation moving radially.

The example we have discussed shows that the first-
order corrections can be due to “near zone” effects.
However this is not always so. In fact it is well-known
that the Weyl tensor induces some shear ¢ in an initially
shear-free congruence of null geodesics. Therefore,

¢ .
from (6c) we see that (9 #0 in general; an electromag-
netic wave is diffused off the space—time curvature.

In the presence of a sufficiently strong gravitational
field such effects may not be negligible. In particular
we have in mind the cosmic microwave background
propagating in a homogeneous Bianchi universe where
such effects might be of observational interest. The
study of Eq. (45) in these situations is under current
investigation and will be the subject of a forthcoming
paper.
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Theovem: For a general background Lorentz metric the equations of the system (6) are consistent.

) N . .
Proof: We shall prove the theornem ’}))y induction. For n :0,(ntzle)ing+%: 0, &:0 it is obvious that the Egs. (6) are
consistent. Next we prove that if B, C satisfy Eq. (6a), then B, C obtained from the Eqgs. (6b), (6c), (6d),

satisfy Eq. (6a) withn +1.
Let us assume then that
D(~i By - 568 + 206 B) + 20(i ) = 0.
We shall prove that

(n+1) (n+1) (n+1) (n+1)

Q@=D(-iB)-3( C)+2p(i B)+2a(i C)=0,
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n n () S (n) ) (n (m)
Q—D{A‘B’-T%’w‘&’wh’+2BA+2H‘1§}-5{— 5B +0A - uc —a® 2B +sz}
n (n)

c2p{-aB 4T A— V8- 64 - 268 - 20 B} +20{~ 6B +04 - L - aC 4278 +2, &)

Q=DAB +5a¢ - 2088 —204C +X+Y+Z+T,

where

X=D[- A 408 + 64 + ZB(X + 2;&’], =-§[- 58 +04 - u(&) +2r B +2'y(C",‘)] ,
Z =2p[+ T(fnl) - u(("3)— G(X— 23% - 2p§j, T =2c[~ a§)+ oi&) ~ u(&)+ 27%) +27((rf)].

By using the commutation relations [(Eq. 6.8) of Newmann—Penrose} one finds

(n)
Q= ADB—(7+'y)DB +T§B+T§B+A6C—VDC+7\GC+(;L+')/ 'y)éC A(ZpB)

+2BAp—A(2aC)+2C Ae+X+Y+Z+T.

The induction hypothesis tells us that
ADB +A5C - A(2pB) - (26 ) =

Hence we can write

Q=- (y+?)D(1"3’ + 758 +76B +20C + @ +y y)3(6)+2 %’Ap+2‘6’Aa - Ppr-mX
+ CDV+D6A +2BDA +2A D,8+2p.DB +2BDu+3568 —cEA) (ﬁ)a
+u6C + C éu 2T<SB - ZB 5T — Z'yGC —2C5'y+2pTA —vaC - 2p5A

(n)
+4BpA 4puB+4oz'rB +4ozyc —ZozéB + ZaUA -2apC.

Grouping together the terms we find
(€3] () {n) (n)
Q=(—y- y+2u)DB—'rSB +(T- Zoz)éB +)\6C (= - ;L+y+'y)'6C +aA +bB +cC

(n})
- (T- ZB)DA +D6A +356B —0'6A ZpGA

where, for simplicity, we have written

a=-D1+2DB~ 30 +2pT-4Pp + 2a0,

b=2Ap+2Dp - 257~ 4pu + 4arT,

¢c=+2Aa +Dv+3u - 25y - 2pv + day ~ 2au.
Still using the commutation relations we find

— . _ )t _ (

Q@=(-y-y+ypu +u)D1n3 —(-p~p +y+~y)6("3 - 2558 -2aDA + (a+5p)A +b(l"3) (c - (“))\)(n,‘).
From the Newman—Penrose equations (4. 2a)—(4*2r) we see that

a+dp=+2ap, b=2p(y+y—-pu-~u), ¢-08r==2ar+2ya+2ya-21a-2ua.

Hence it follows that
_ — _ - _ _ - -
QZ(—Y—')""IL'*'H)Dg—(—IJ-"‘#+7+7)5%)—2p(7+7—u—u)%)-— (- 2ya - 2y« +2uoz+2;.ta)%):0.

Therefore the theorem is proved.

N (m) _ ) @
APPENDIX B B0 BY -5 K2R (B2)

r+$=m

In this appendix we prove the following theorem.
] ] and we consider only one state of polarization.
Theovem: Equation (19) in the text, is a consequence

of Eqs. (3) and (4) at all orders in 1/w. From Eq. (4a) in the text and its complex conjugate
we obtain
Proof: Let us write
BY’ BY VAX'(é) BY: azxe ("I‘{” X
d (n) ’ , =-i0"0 ot
eAX' = 2 w™" éAX' (Bl) AX r+s=n A

n=0 . Amxt T (7) plsil) 4,

where +i0%0% 2 KA Ex© . (B3)

r+s=n
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Now we have

(r) , (s+1) ) . () n, (nt1~q) (@)
B 3y B 3 Y =y
T*Zszn KA KX' - KA KX' + Z/; KAB KJ(' b (B4)
Q=
(rel) . (5) ) (n+1) I (p) (neg-p)
B b b NN p =Ty
PR e S SREN REPIY AN i (B5)

With the help of Eq. (3) in the text, we prove that

(n)
AX*
VA o,

L7 =0, QED
hence, by Eq. (B1),

VAX @, B 0.
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Further heavenly metrics and their symmetries

J. D. Finley, llI* and J. F. Plebafiski
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New developments in a continuing investigation of complex V,’s with purely self-dual conformal curvature
are presented: (1) conformal and projective extensions of spaces with Cjz¢5 = 0 are discussed; (2) Killing
vectors for general heavenly metrics are determined; (3) the solutions, in heavenly spaces, for (massless)
D(0,s) spinor fields (in particular, the Maxwell field) are found; then (4) new examples of hegvenly metrics
of types GX [-] and DX [-] are provided; lastly, contraction of the DX D solutions of Plebanski and
Demianski to type DX [-] is performed, giving a complex prototype of the Kerr~Newman solution, and

all solutions of the type N [-] are given, which contain two arbitrary functions of two variables.

1. CONFORMAL AND PROJECTIVE EXTENSIONS OF
STRONG HEAVEN

This article follows the notation and terminology of
Plebanski, ! hereafter referred to as I, and along with
Plebanski and Hacyan,? is the third in a series of papers
dedicated to the study of the “analytic continuation” of
the basic structural relations of general relativity. By
way of review, we mention that the study of heavenly
metrics is motivated by the desire to produce general
(real) solutions of the Einstein equations on a real mani-
fold. The complex approach to this problem has been
developing for the last several years through accidental
discoveries of complex coordinate transformations which
permit one to proceed from one real solution to another
real solution.® Less serendipitous approaches to an ex-
planation for this phenomenon have arisen recently

which generated some of the terminology used here.?

In the study of real Riemannian spaces it is useful to
classify them according to the degeneracy of the eigen-
vectors of the conformal tensor—the usual Petrov—
Penrose classification. In the complex case a gen-
eralization is easily obtained by a tensor product of two
(independent) such classification schemes. (See Ref. 1
for a complete derivation.) We therefore label the con-
formal curvature of a complex V,; by symbols such as
GXG, DXN, Nx[-], etc., identifying as usual G
={1-1-1-1], p=[2-2], N=[4], etc. This classifica-
tion scheme will be used often in what follows to de-
lineate the kind of spaces under consideration. We will
first indicate the nature of some conformal and projec-
tive extensions of the notion of heavenly manifolds—
those for which C3365=0, R, =0~which generate weak
heavens—only Cs3¢53=0. Then some strong results
about all possible Killing vectors and all D(0,s) irredu-
cible heavenly spinorial fields definable on a strong
heaven (characterizing massless particles) will be given.
Lastly some more attention will be paid to explicit con~
structions of heavenly manifolds.

We first consider two (complex) conformally equiva-
lent Riemannian spaces:

Vyidst=2e'e? +2e%!, T, ds®=2818% + 2595 1.1)
et = et
pe (1.2)
b, =20,
de®=e® AT%,, de®=3o® A T4, (1.3)
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One easily finds that these relations imply that

Ty =Ty +2(Ind),,e5. (1.4)

Using the Hodge duality operation? and the usual spinor
form of the connections (see I), we may write that

Tap=Tap— 5(106) 0,515 =Tap+ (1/20) % (dInp A S ,p),

(1.5)
and a completely analogous equation with dotted indices.

If the space V, is a strong heaven, then there is a
choice of gauge such that I';3=0. Then the conformally
equivalent V; will be a weak heaven, i.e., the anti-self-
dual parts of the conformal curvature tensor will still
vanish-C 335 =0—but R,,#0. In fact one finds that

CABCD :d’chBcn» (1-6)

PN 27 e
CABCDzd) CABCD’

- Rab/2 = V(aEb) - BaBb + 'égab(%céc + 2Ec§0)y (1 . 7)

where B,=¥,In¢ and ¥, is understood to be the co-
variant tetradial derivative in V.

It is interesting to wonder whether one can use a con-
formal transformation to generate a new solution of
Einstein’s equations in vacuum (with R Efiabg“” possibly
nonzero). That is, starting with V, as a strong heaven,
how must one choose ¢ so that, in V, ﬁabzi-ﬁgab¢0. In
the Appendix it is shown that this cannot be done. If one
relaxes the above condition and allows R =0 (still re-
quiring R , = iRg ), he gets only transformations be-
tween two (in general different) strong heavens rather
than one from a strong to a weak heaven. It is further
shown in the Appendix that this type of transformation
can be generated by a conformal transformation only
when both spaces are of type N x[-].

Experience with these conformal transformations
leads one to contemplate an interesting generalization
which arises when we replace “d1n¢” by a general 1-
form, «. (This is, of course, similar to the standard
generalization of conformal structures into projective
structures in real geometry.) We are thus led to con-
sidering spaces such that, in a specific choice of

tetrad gauge,
FAE‘?:— (1,5/27')* (OI /\SAB) (1.8)

We note that simple algebraic manipulations show that
Eq. (1.8) is equivalent to

dSap+2a ASyp=0, 1.9)
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which is, of course, also true only in a specific gauge.
It is relevant to note as well that Eq. (1.9) requires that

da NS;3=0, (1.10)

which implies that the 2-form do must be self~dual

(*da =da). (These equations then coincide formally with
the complex extension of the homogeneous Maxwell
equations. ) Notice that if @ =d1n¢, da =0 and this con-
dition is automatically satisfied. Calculating, now, the
curvature quantities, one finds, perhaps surprisingly,
that

Cisnp=0. 1.11)

Also, straightforwardly from Eq. (1.7), one has that

ABED

- cab/zza(a;b) — 0,0, - %gabgc‘t(ac;d_ g, 1.12)

—R/12=ayj + g, + @y, + a0y,

where C,,=R,, ~ (R/4) g, is the traceless part of the
Ricci tensor. Therefore, the condition given by Eq.
(1.9) guarantees that the manifold in question is a weak
heaven.

We would like now to determine the canonical form of
the null tetrad applicable to this condition. We apply
Frobenius’ theorem in the following form: If, in a star-
shaped region of M,, there are » 1-forms o' (i=1,...,
¥ <n) functionally independent—$= w! A cee A" #0—
and there exists a 1-form # such that d2=6 A&, then
there exist functions f‘,, gi (¢,7=1,...,7) such that w’
=f*,dg’. Noting that STf=2¢% Ae' and S¥2=2¢3 A ¢?,
Frobenius’ theorem and Eq. (1.9) allow us to infer the
existence of scalar functions such that

el =¢'e®(Adp + Bdg), e*= o e °(Edr + Fds)
- et=o¢7le’(Cdp +Ddg), - & =¢ e (Gdr +Hds),

(1.13)
normalized so that

AD-BC=1, EH-FG=1. (1.14)

Of course, since 0#¢e' A 2 Ae® Net=¢ tdp Ndg Ndr Nds
we see that p,q,7,s can be used as independent co-
ordinates. By substituting Eqs. (1.13) into $;, and
utilizing Eqs. (1.9), it follows that

a=dlng +0,dp +0,dq—o0,.dr-o.ds, (1.15)

so that da does not, in general, vanish. In addition, the
equation for S12 requires the existence of functions x
and y such that

AE +CG=¢"x,, AF +CH=e"x,, (1.16)

BE +DG=¢%y,, BF +DH=e%,, (1.17)
and

(e'%,), = (*y,),, (e"x5)=1(e"% ), (1.18)

Solving Egs. (1.17) for E,F,G, and H and inserting into
the condition (1. 14) gives

a(x,y) — o

o = (1.19)

which means that x and y may be used as coordinates in-
stead of » and s. By using these new coordinates and the
expressions for E,F,G and H, the tetrad may be written
as
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e' =AY Adp + Bdq), - e*=A"Y(Cdp +Ddg),
e’ =A™\[D(dx + Kdp + Ldq) - C(dy + Mdp + Ndg)],
- & =AY~ Bldx +Kdp + Ldq) +Aldy + Mdp + Ndq)],

(1.20)
and
a=dln¢ + Edp +ndq,
with
A=¢e’, K=-x,, L=—-x,, M=-9,,
N=-y, ¢&t=20, n=20, (1.21)

while the derivatives, of course, refer to x and y as
functions of p,q,7, and s. It is now clear that A, B,C,D
such that AD — BC =1 simply describe the residual free-
dom of the heavenly gauge group—the group which ddes
not affect S;;. So, without loss of generality, we can
fix this gauge by setting

A=1=D, B=0=C. (1.22)
Taking, therefore,
el=aldp, -e'=a"ldq,
& =AY dx + Kdp + Ldq), — e®=A"Ydy + Mdp +Ndq),
(1.23)

as starting conditions, one finds that Eq. (1.9) is auto-
matically satisfied for S11, while S12 implies that

a=dInA + 3(L - M), dq - 5(L — M),dp. (1.24)
Lastly s requires the four conditions

K,-L3;=0, M,-N; ;=0 (1.25)

K'4 +L'1 =0, ]\/[,4 +N,1:0,
where the directional derivatives are just the ones
determined by Egs. (1.23):

3= A3, —d3=A4A0,, (1. 26)

3 =A@, —Kd, - Md,), —d,=A(3,— L3, ~N3,).

We now note that the space under consideration is a
general V, satisfying Eq. (1.9); therefore, a general V,
satisfying Eq. (1.9) is conformally equivalent to the
space which arises when we set A=1 in all the appro-
priate equations. Therefore, setting

A=1, (1.27)

we may then compute the general expressions for the
connections and curvature quantities. As the calculations
are simply tedious, we give only the results. It is use~
ful to note that Eqs. (1. 25) give us the existence of two
functions ¢, ¢ such that

Kz—d)ya L:¢xy M:Zl’y, N:_ww (1-28)
which must then obey

22,2, +2,3y) (f) = 52,8, (ff) ~o0. (1.29)
It is also useful to define

Q=¢,—p,=L-M. (1.30)
Then we have

4
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a=Q se'-Q e (1.31)
The connections are given by

Ty=~ 7Q €t + %dez)

Ty =-2(¢. + e - dree?,

=Ty + Ty =+3Q,e' +3Q.e, (1.32)

Ty + Ty =— 230, + 1), ' = 5(0, +3%,), €4,
T3 =0, Ty =-,e - 3{d:+s)e’
The hellish components of the conformal tensor vanish,
while the heavenly ones are given by
C® =2y, CY=3(d,+ 3w,
C® =g+ )y, CP =300+ )y, CV=20,,.

Lastly, the Ricci tensor components are given explicitly
by

Riy=-@Q,;-2€,5Q,3 Ry=3Q,2, Rp=0,
Ryy=@Q,p+3Q,Q,3 Riyy=~3Q,5, Ry=0,
Ry=@Q 1y~ 3Q,:Q,2, Riz=~12Q,3, Ru=0,

and

(1.33)

(1.34)

R=0,

It is worthwhile to point out that if @ =0, we have a
function © such that

¢=9,, v=0,, =0, (1.35)|

2
C=C,pcpC*P =~ bc/2,

3
C =C 5cpCCPEFCpp®® = - 3act/8.

and this manifold becomes identical with that of the most
general strong heavens discussed in I, so that this is a
direct generalization.

We now want to point out some solutions of Egs. (1.29}
first writing out those equations in full:

{py3,0, +1,3,8, — (D + 1,)0,3, +8,0, +3,0,) (‘j)’) =0.
(1.36)
[Again note that under the conditions of Eq. (1.35) these
equations reduce to the heavenly equation discussed in
1. ] Reduction to one equation may be accomplished by
the ansatz’®

where J is an arbitrary, sufficiently differentiable func-
tion of one variable. Equations (1. 36) become then more
manageable but still not solvable in general. If we now
go further to the special case ¢,, + ¢,,=0, J''=0, the
most general solution is then

¢=Flx+Gkx +y)], v=rko,

(1.37)

{1.38)

where F and G are arbitrary, sufficiently differentiable
functions of one variable and k=J’ is a constant.

One may now explicitly calculate the components of
the curvature tensor and determine the algebraic type
of the corresponding conformal tensor. For convenience
we set

a=G"F', b=3G"F", c=F",
The conformal invariants are then

d=G’. (1.39)

(1.40)

We may also look at the equation for the P-spinor itself. Taking 2 :K‘/K2 as the ratio of the two components, we

have

0=2C 45 pK KPKKP = (K)* {CP2* +4C' V2% + 6CP 2 +4C Pz +C1Y,

(1.41)

With Egs. (1.34) and (1. 38) we have, with w=1/2z for convenience,

@ +E){(@+db+d%)w +2)° + (0 +3d°c)w + k) + 3de(w + k) +ch=0.

The following table shows the possible algebraic types:

(1.42)

G =0, conformally flat, [~]X[-]—da=0,
C:F”,:O: G,”:O,
G''#0: Frr =0, <[],
G #0: NXx[-]—a=0 (strong heaven),
F17#0, rx[-],
G =0, nrx(-1,
GIII:O: [ ]
G""#0 G X~ )
:F"’#O: ’ *
¢ =0, Igx[-],
G'""#0: ¢ + (46%)/(27a%) )
+#0, Gx[-]

Note that type D X[~] cannot be obtained from this particular class of solutions. We have used
do :Qxy(dy /\dq —dx /\dP) + Qxxdx/\dq - nydy /\dpy Q = (;bx - wy =F',

Also note that the case of type Nx[~] is really just another way of writing a standard strong heaven since & vanishes.
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2. CONFORMAL KILLING VECTORS IN STRONG
HEAVEN

We intend to determine, as explicitly as possible, the
constraints on a heavenly space imposed by the exis-
tence of Killing vectors, and vice versa. We work with
the “canonical ©-formalism” of strong heaven and take
the equations as

Epo= K —2X8,=0. 2.1)

We recall, in addition, that heavenly spaces are deter-
mined by key functions © which satisfy the heavenly
equation

0,,0,,~ (0,)) +0,,+6,,=0. (2. 2a)
The tetrad then takes the form
el=dp, —el=dq,
et =dx -0,4p +9,4dq,
- e*=dy+O,,dp - 6,dq,
{2.2b)

azzaaw - 83::33”
al = ab + ewax - exyaw

S R Y Y M

xyUx

For more details see Paper I. For a,b=2,3 in Egs-
(2.1) we find

0, =0==0,K;, 3.K;=0K,. (2.3}
We introduce a polynomial

A=ax®y?/36 + Bx’y?/ 12+ yx%y3/12, (2. 4a)
with

AV AL, AP =4 (2. 4b)
and

K,=A® =av+8;, K3=A{P =ax+v, (2. 4c)

where o, f,, and ¥, are unknown functions of p and ¢
only.

Proceeding to another triple of the equations, we find
that E 3 =— 3,(K, +%,-AP)=0, from which we have the
existence of a function T such that

Ki+o,=A+T, T,=0, (2.5a)
where we use = as an abbreviation for
=042 +0A4% -30A7" (2.5b)

Likewise we have that By, = 8,(K, +3,-A%)=0, from
which
K, +3Z,=A%+S, S,=0. (2.5¢)
Then we manipulate
Epy= Egy = 0K, + D, + ALY + (K + T, +A) =0.
(2.6)

Inserting the results from Eqgs. (2.5) into this equation,
we have

0,(T + 24800 +2,(8 +241)) =0,
2.7
9,(T + 2450 =0=10,(S+24L)).
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This triple of equations now has exactly the same format
as Eqgs. (2.3) which resulted from the first triple of
Killing equations. Their solution therefore is given by

a new polynomial

B=xx%?/2 +Bzx2y/2 + veav2/2, B =B,,, (2.8)

and the equations

{1 )
T +248) =B,

yye —

{1 i
5+2Arxp :—Bx ,

where, of course, X, 8,, and y, are new unknown func-
tions of p and ¢ only. We may conveniently insert this
information into Egs. (2.5), for K; and K,, by in-
troducing the auxiliary functions

=2 -A +24{Y - BV,
(2.9)
Q=3 +24{ - A}

yg )

W=8,- 2.

{(We note that W is simply a third order polynomial in

x and v.) We have then that
Ki=030, Ki=- 3,8,, (2.10}

which is a form suitable for use in the next triple of
equations. Using the values of the commutators [aa, 3
and a procedure very similar to that used for the pre-
vious triple, we find that
92 +0,W, ~O,W,, +06W, =M,
(2.11a)
3,2y + O W, -0, W, +OW y=N.

where, again, we find three simple equations in the
same format:
3e(M = Ayype +2Byy) +3,(N + 34,1, +2B,,,) =0,

(2. 11b)
3, (M = 3A 5500 + 2Byye) =0 =23, (N + 34+ 2By,).

We may therefore introduce a third polynomial

C=3kxy +Bxx +vgy, (2.12a)
with &, B, and y; unknown functions of p and ¢ only and
write, as before,

M-34A +2B

yyyqq yyq

= Cy, N+ 3A”x” + ZBxxp = - Cx.
(2.12b)

Inserting Egs. (2.12b) into Egs. (2.10), we determine
the consistency requirements on our unknown functions,
which, after considerable rearrangement of terms,
become simply

3, (Z+V-D+2aA)=~ 40a,,
(2,13)
a(Z+V+D +20A) = +46a,,

where V and D are just polynomials in x and y given by
VEAPMJC - Aqayy + (Brp + Byq)//;2>
D= Z(Appx.t—quxy +Aqqyy) + 3(BXP" Bvq)//z + C7

while = and A carry all the © dependence. The quantity
= is just the ©-dependent part derived in a straightfor-
ward way:

(2.14)

/
J.D. Finley )1l and J.F. Plebanski 588



— ( {1) 1) 1)

220,42 - 0,4 +0,(A4) - 245 + B,V)
{ (1 1)
+6,(24: - ALY+ BIY)

+O(4AL - 44D - 3B{D). (2.15)

However, A is an implicit function of © defined by

Ay=6,~6,, A=-6,-6, (2.16a)

whose existence is assured because Eq. (2.2a) can
simply be rewritten as

3,0, +6,) +0,(6,-96,,) =0, (2.16b)

In principal these equations now determine all con-
formal Killing vectors. However, E;, + E3; could still
tell us something if we knew more about the function .
The heavenly nature of the space in question makes the
constraint relations between © and y especially strong.
To see this, we look at the formal integrability con-
ditions for Egs. (2.1)%:

ﬁK FabcE Ka;cb +Rdbach: ('_gcbx,a + EacX,b +gabx.c)

2.17
and ( )

£ kR gboa =8 caXioa™ EcoXiaa = &aaX;ve T &asXiac 2.18)

By remembering that, in heaven, R, and therefore
R, vanish, Eq. (2.18) requires that

S = X;a6=0. (2.19)

What constraints do these relations put on © and x? We
see immediately, from Jy,, Jy;, and Jy3, that

X = Bsx + vy + 03, (2. 20)

where 83, ¥;, and 83 are as yet arbitrary functions of p
and g only. From Jy, J3, Jy, and J;, we find that a
function 74 =T4(p, ¢) exists such that

B3=Taq 73==T3p, X=TyeX = T3V + 0, (2.21)
and the following equation must be satisfied:
T30y + T39O0 = Py = Tyoox?/2 = Topexy + Toppy®/2
T 03X = 03,y + K3, (2.22)

where 0; and k5 are new functions of p and g only, and
we have used the nontrivial equation Jy4 =J,;. The last
triple of equations can then be manipulated to yield

T1Oy + T0y = T4Nx2/2 = TypXy + 74”3)2/2

T X+ VY + Ky, (2.23)

where 7,=~ 03+ 83 and p,, V4, k4 are new functions of p
and q.

Now suppose that 7, is not a constant. (We assume
therefore that at least 7;,#0.) We may then integrate
Eq. (2.22) to obtain

e:F(X;l):q)+ (Y/qu)Qa(xyy;P,CI)y

where F is an arbitrary, sufficiently differentiable
function of three variables and @4 is a specific second
order polynomial in x and y constructed from P;. Notice
that this implies that all fourth partial derivatives of
O(with respect to x and y) are proportional and, there-
fore, that the space is of type NX[-] if ¥ is a nontrivial
function of x or y. We may now, however, insert this

(2.24)
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equation for © into Eq. (2.23), obtaining

(TepTaa = TaaTsphFx =R3(; 0, 9), (2. 25)

where R, is a specific second order polynomial in x.
Therefore, assuming Fy,,, ¥ 0 (vanishing of this would
imply that the space is flat), 7, must be a function of 5.
Only if the function is linear, however, can the two
equations be made consistent, but, of course, the space
is then either of type Nx[-] or flat.

On the other hand, if 75 is a constant, then 05 and &,
must vanish, while 7, reduces to §;=x =x{,q). How-
ever, assuming y nonconstant, one may integrate Eq.
(2. 23) and obtain a completely analogous equation to
Eq. (2.24):

O =G X% = X; P, 0) + /% )Q5(x,¥;0,0),

where @; is a second order polynomial in x and y. It then
follows again that the space must be of type Nx[-] or
flat. We see therefore that if we desire a more general
algebraic type only constant ¥ can be allowed. There-
fore, taking x =¥, as a constant, we may integrate the
tenth and last Killing equation:

(2. 26)

Ejp+Ey =40,y ~ 4a,x +4(Bp~ 71t A~ X)=0.
(2.27)

We see that o = ¢y, must be a constant. Referring back
to Egs. (2.14), we see that then D,, must vanish. To-
gether with the rest of Eq. (2.27) this requires the

existence of a function ¢, =¢{p,q) such that
31:(b1q+pup, Y1=0 1~ 0od s

/ 2.28

BZ?_72Q:—2£s QOE(XO_%)/Z, ( )

with A=, also constrained to be a constant. Now, how-
ever, we return to Eqs. (2.17)—the rest of our con-
sistency conditions—and consider their anti-self-dual
part, which is

Kap;a=Sa3"aX,c=0, With K33=833%K 4. (2. 29)
We easily calculate that
Kyy=-4¢&, Kjp=-4o,, K"2'2=8(p0+)x0). (2.30)

These will then satisfy Egs. (2.29) if £=¢, is a con-
stant, which implies there is a further function ¢,
= ¢4(p,q) such that

82:(1)20—50[); 72:¢2p+§()(]- (231)

One may now verify that the rest of Eqs. (2.17) are also

satisfied. Equations (2.14) may now be integrated into

just one equation:

E+200A =~ (x2, = 10,)301/6 + (x3,— v3,) b,/ 2
- Byx + vy +e, (2.32)

where ¢ is an arbitrary function of p and ¢ and we sum-
marize below all the relevant equations pertaining to
the above master equation. The Killing vector K =K, e°
is here being thought of as K =K*3, + K3, +K"2, +K’3,
because the coefficients are much simpler:

2= K"0,+K%©,+L9,— L,0, +(2p, + 6%,)0,

KP=og + ¢+ pgp, ~K'=opx+ b= pod,
K =L, +20©, -K =L,+200;,
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Li==(P1pq+ 00— 2X0)% + D1ppy + op + £04,
L= e = (D1pq— Po +2X0)Y = gy + Eab,
A,=26,-6,,0,+6,0,, -A,=20,+6,0,-06,0

xy Ty

(2.33)

Considering this form, we see that all the Killing equa-
tions have been reduced to one partial differential equa-
tion relating ©, the unknown functions ¢,, ¢,, Bs, ¥, €
and the constants ay, py, £y, Xo- It is clear, at least
when o =0, that there are no nonzero Killing vectors
for the most general function 6. On the other hand, Egs.
(2. 82) and (2. 33) can be very useful to determine the
symmetries of a given metric, or a metric which has
desired symmetries,

As a trivial example we note that in order for 3, to be
a Killing vector we must have K® =1, K?=0=K" =K.
Inserting this into our equations, we find that they
integrate to

O=1f(x,y,q)+Bx+7V +35,

where 8, 7, and 5 are functions of p and ¢ only and f is
arbitrary; this is just sufficient to insure that 9,g,,=0,
as one would expect. It is, however, not true that there
is no (implicit) dependence of the metric on the functions
8 and ¥ since © must still satisfy the heavenly equation
(2. 2a), which gives the dependence on B, and ¥, of the
function f{x,y,¢)." It is also somewhat interesting to
consider the case where both 3, and 3, are Killing vec-
tors. Equation (2. 33) then shows that

O=Z(x,y) + (T, +&*p/2)x = (T, - k'q)y +¢, (2.34)

and
Zxeyy - (ny)z == kZ’

where k' is a complex constant. This case will be com-
pletely solved in Sec. 4.

For some less trivial examples we look first at a
class of metrics first discussed in I:

6 =[B/2a(e - 1)]x*»!™*, a#0,1. (2. 35)

We note that the excepted cases, @ =0,1, correspond to
flat space, while, as is shown inI, a=2,~1 are of type
Dx[-]. All other values of o lead to spaces of type

O, x[~]. If we first assume also that @#2,-1 and
utilize Eq. (2.32), we find that there are exactly three
Killing vectors:

Ay=(a +1)(pa,—x2,) + (@ - 2)(gd, - ¥3,),

2.36

Bizap; Clzaw ( )
with the commutation relations

{AUB{]:—(Q +1)Biy [Aiscl}:"’(a"z)ch (2.37)

[By,C(]=0.

We note that the case @ =1/2 is special because then the
vectors can be renormalized so that the algebra is (a
complex form of) the algebra for the Euclidean group in
two dimensions.

The cases o =2,~ 1 are essentially the same (modulo
renaming of coordinates), and so we mention only the
case @ = 2. Here the group is four-dimensional:
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Ay =pd,—-x0,, By=20,, (2. 38)
Cy=0y, Dy=po,—ydy,
such that
[4;,B,]==B,, {A;,C,]=0, {A,,D,)]=D,
(B, C,]=0, [By,D,]=Cy, [Cy,Dy]=0. (2.39)
This is a solvable algebra with C, in the center.?®
The last case to be considered here is
6 =kx*/yq® - x*y /4q. (2.40)

It is shown in Sec. 4 that this metric and the one in the
previous paragraph are the simplest members of two
branches of solutions which contain type Dx[-] spaces.
They are therefore of some special interest. For the
space determined by Eq. (2.40) the Killing vectors are
{again determined quite simpiy from Eq. (2.32))

LB::—(]aq +yay, A3:])ap"’ qaq"‘xax +yay:
By=0d,, Cy=p3,/2-pqd,+(qy—px)d, +pyd,,

(2.41)

[L39A3]:05 [LS’BSJ:()’ [L3)C3]:07
[A;, Byl=~B;, [A3,C3]=C;, [By,C3l=A,.

(2. 42)

This algebra is isomorphic to a complex form of the
algebra for the group which is the direct product of time
translations and the usual spherical symmetry group.
That is to say, (in a complex way} this is just the Killing
algebra shared by the Schwarzschild and NUT solutions.

3. MASSLESS SPINOR FIELDS IN HEAVEN

We first consider a D(0,s) object (spinorial field for
spin s) subject to the usual constraint

VC§WCA1M=A25_1 =g"4v, Veng oo ay, (=0, (3.1)

where ¥¢, ...¢,, is totally symmetric in its indices. Such
a field describes a general (massless) particle of spin
s. Utilizing the connections in the © version of the
heavenly metric [see Egs. {(2.2) and Paper 1], we have,
with B=2,

Iy Wiag e ey = OxWongoee aggups (3.2)
which implies the existence of a spinor §A1 sor Ags_y such
that

‘IllA oo A :axEA oo A

1 25+1 S Aq 2s-1
) ’ (3.3)

\IIQA‘.” Angy :aygAl,,.AZS_l.

We may facilitate further matters greatly by using a
“heavenly spinorial derivative”

61‘=’ax:
54t (84,85]=0. (3.4)
8, = 2,
We then have that
q’Aiou-AzszéAigAzuae AZS. (3‘5)

However, the symmetry of ¥ allows us to repeat this
process:

(3.6)

0 =0 .
4 EAZA3 A 4 EAXA?) A4

28
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Repeating this process 2s ~ 1 more times, we find that
there must be a single potential function® H such that

. 3.7

We now consider Egs. (3.1) with B=1, which becomes

‘I'(A vow AZS:§AI eoo 5"4251{'

(V¥ + V) éa, =(VaVi+ V3V 84 e 2y, =0,

(3.8)
where the form of the heavenly Riemann tensor guaran-
tees that the two expressions are equal to each other.
We may therefore rewrite the equation as

et Agset

VOV E, -°°A23_1=Vava6A1 eedy, H=0, (3.9)

which is then the subsidiary condition that H must
satisfy.

We note that for the case s =1/2 this merely says that
H must satisfy the (curved space) d’Alembert equa-
tion "—OH =0. We may, however, for larger values of
s, attempt to commute V*V, and §,. To do this, we note
that the heavenly connections may be written in a most
useful form by the use of our new notation:

I-1AB1 = 6:46.8626! FAB4 = 6446861(3’ (3' 10)

while the other I'’s vanish. It then follows that

1
EVOVEA v ay, = (9192 T 2030084 e,

+TC?, 5 .
A, cEDAZ *Aggy

vsa CD
teeet T A5y OCEDA oty o
(3.11)
where

T2, =5%75,0 (3.12)

is just a useful way of writing the connections involved,
using Eqs. (3.10). It is also useful because we easily
calculate that

(8,8, + 8,24, 54]=— T°P 4805. (3.13)
We now have that
0=5,,(018, +8405)04,°0° bs,  H
+TCD,42505D5A1 e By, H
Fen kT, BcBoby, v+ bay, H. (3.14)

In the case s =1 (electromagnetism) this merely says
0=26,(9,0, +3,0,)H =0,VVH, (3.15)

By following the “philosophy” propounded in I, a real
electromagnetic field can be characterized by a 2-form

w=2f,5547, dw=0,
. (3.16)

w=2f335*?, dw=0,
where we have just used f, 5 to represent the special
case of ¥y, ... 4, for s =1. On a real manifold w and
are related by complex conjugation; but, a (purely)
heavenly electromagnetic field has w =0 (similarly w
=0 for a hellish electromagnetic field). We then note
that Eq. (3.15) implies that DH=f,(p,q), which, re-
gauging H by letting H go to H +xf(p,q), becomes

0=TH=2(3,3, + 3,0,)H, fas=0405H. (3.17)
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For reference we also point out that we can rewrite this
directly in terms of the self-dual electromagnetic 2-
form—Egqg. (3.16):

w=-d(4H,dp — 4H dq). (3.18)
Also the invariant of the field is
}E4fABfAB:B[erHw' (ny)Z]_ (3.19)

Equations (3.17)—(3.19) now constitute a complete solu-
tion to the problem of a strong heaven with purely
heavenly electromagnetic field. It is also worthwhile to
point out that the usual electromagnetic energy—momen-
tum tensor E,, vanishes if the field is self-dual. That
this is true can be seen by a direct calculation in 4-
space but is much more easily seen if one writes the
Einstein equations in spinor form:

Coo=2E 4~ Captp=-8fapfts. (3.20)

From the form of this equation it is quite clear that if a
purely heavenly (or purely hellish) electromagnetic field
is the only matter present, then C, .. must vanish and
therefore the coupling of the curvature to the electro-
magnetic field is eliminated. [There is, of course,
coupling in the reverse direction, via the connections in
Eq. (3.17).]

For spins greater than 1 the repetition of the process
leading to Eq. (3.14)—commuting more than one deri-
vative past 3,8, + 3,9;—leads to the introduction into the
formulas of derivatives of T“’A or, if one prefers to
use covariant derivatives, components of C 45cp, Which,
in general, does not yield particularly simple equations
nor does it allow convenient regauging, such as was
done to obtain Eq. (3.17). Some words should be said,
however, about certain special cases. We see that Egs.
(3.10) make the connections look, more or less, as if
they had s = 3/2 although this is not exactly so because
of their mixed nature. Also for s =2 there is a special
case, the gravitational field itself. We easily see that

Cancp="04055:059, (3. 20)
showing the actual role that © plays as the potential for
the gravitational field. Of course, the heavenly equation
is simply a regauged and thrice integrated form of Eq.
(3.9) for this special case. Note, however, that the
standard spinorial form for the Bianchi identities, when
R,, =0 is just

V¥ :Crrcp=0, (3.21)

which is just Eq. (3.1) for the case s =2. We may also
note that Eq. (3.9) for this special case of a spin 2 field
equal to the conformal curvature itself allows con-
siderable simplification because the 8 in Egs. (3.20)
and (3.12) is the same:

5A16A2(8132+84a3)6A39:0. (3.22)

However, Eq. (2.2a), which © is constrained to satisfy,
implies
(2,2, +8,35)8,,0=0,

so that this is the mechanism by which the Bianchi equa-
tions are satisfied.
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4. MORE PARTICULAR SOLUTIONS OF THE
HEAVENLY EQUATION

Looking for interesting solutions of Eq. (2.2a) we
first consider the logical special case in which 6,=6,
=0. In this case we clearly have at least two indepen-
dent Killing vectors 9, and 2, and, as we will see, the
solution always describes a space which is algebraically
special. The heavenly equation—Eq. (2.2a)—reduces to
just the classical equation for a developable surface in
two independent variables. There are!! two first in-
tegrals describable as

(a) ey-‘F(ex):O)
(b) ¥O, +x6,+G(0,) -0 =0,

4.1)

where F and G are arbitrary, sufficiently differentiable
functions of one variable. The general solution may also
be written in the form

0=0(x,y)=hx +F(h)y + G(h), (4.2a)
where h=h(x,v) is determined by the equation
x+yF'(h) +G'(h)=0 (4.2b)

To show that all solutions so generated are algebraically
special, we calculate the components of the conformal
curvature tensor, which may be written as

CY'=28,0 (H"6,), i=1,...,5, (4.3)
where
H=H(x,y)
F', solution taken from Eq. (4.1a),
= (4.4)

~ (x +G")/y, solution from Eq. (4.1b).

One may then calculate the invariants of the conformal
tensor, with the result that [see Eq. (1.42))

(2: :G(erxx)zv é :G(erxa:)av
2
a=(Cy-6(ly=0,

thus guaranteeing algebraic degeneracy; i.e., there is
no possibility of type G X [-]. However, we can do more
by looking at the equation for the P spinor as the equa-
tion the degeneracy of whose roots determines the type
of the solution [see Eq. (1.41)]. Inserting values from
Eq. (4.3), we find that there is always a double root

at z = - H. There are basically three cases:

4.5)

©,.H =0 implies type Nx[-]

0.H,#0,

:O’ DX["]!
(©exH ey + 20 0 aH, ) = 30,0 i (H,)

+0, Hgx[-].

(4.86)
Having found all solutions independent of p and ¢, we

generalize to all solutions where the metric coefficients
are independent of p and ¢, given by Eq. (2.34). The
general solution is generated by the set of equations

Z =(ky — h)x +F(2ky — 1) + G{I),

x=G'(h) - F'(3ky ~ k),

where i =h{x,v) and as usual F and G are arbitrary,
sufficiently differentiable functions of one variable. Note

4.7
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that if either F’’ or G’/ vanish, then it is automatic that
only C® is nonvanishing and we have type N x[-] again,
However, these solutions are in fact sufficiently gen-
eral to include spaces of algebraically general type when
£#*0Q. By noting that the two first integrals can be written
in the form

yiin:ft(xq:iZy)a

with f, arbitrary, the degeneracy equation may again be
calculated. As it is quite complicated we content our-
selves here with two examples of type Gx[-].

1f Fu) = G{u) =ulnu is chosen, we find that the metric
components are simply (taking k=1)

©,,=- zsech?(x/2), ©,, = tanh(x/2),

4.8)
Oy = 2/3) .
The degeneracy equation then becomes
w + 3 tanh®(x/2) sech®(x/2)w .9

+sech?(x/2){1 + 3 tanh?(x/2)]/16 = 0,
with w =yz, which has no multiple roots.

Another somewhat more interesting example is ob-
tained from

Z=2(x- by 12 p_p2/27, (4.10)
The metric components are given by

J=3 3 _-I/2(x__ byS)—1/2 -6 ,

O,y =— (x + 20y J/y, (4.11)

B,y = (x = 4y ¥ J/y2,
Again we note that this solution is of algebraically gen-
eral type, but in the limit as b goes to zero it becomes
type Il X[~], being then a special case of a solution
discussed in I. It is now clear that solutions of all pos-
sible algebraic types exist for the heavenly equation. It
is also relevant to note that when this metric is inserted
into Eq. (2.32), which determines Killing vectors, we
find that 8, and 2, are the only solutions, which, of
course, was obvious. However, for 5=0, one acquires
an extra Killing vector—Eqs. (2.37) for a =3

As angther example of interesting heavenly metrics
we construct solutions of Eq. (2.2a) which have

C(S):O:CM)

and are of type DX[-], which [given Eq. (4.12a)] is
equivalent to the condition

SC(I)C(S) 2c(2)c(2)

By using Eq. (3.20) for the C'*’s (see also I), Eq.
(4.12a) requires that © be a third order polynomial in

x such that the coefficient of x® is also independent of v.
Inserting this form into Eq. (4.12b) leads to the {ol-
lowing form (modulo p,g-dependent translations of x and

v):

(4.12a)

(4.12b)

O =qx?/y +Bx% +yayi+ oy rex + v+, (4.13)

where «, ..., n are functions of p and ¢ only. One then
finds that
C® =8a/y®, P =-240x/y*, CP=48ax’/°,
(4.14)
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so that we must have a nonvanishing for a nontrivial solution, However, this © must still be constrained to satisfy
Eq. (2.2a), Combining Eqs. (4.13) and (2. 2a) and comparing coefficients of different powers of x and v, one finds

two distinct families of solutions:

Family I
CY:f({)}, B:Oy 7:—%)‘?/,{7

s=y(4y - 1)q/3 +g(p),
€p+§q:— 1206,

Family II
a=k[q+f(2f’)]-3;
y==28f", d=1f"+B(f)-8"20).

B=-ilg+ 1)

where 2#0 is a constant and f () and g(p) are arbitrary, sufficiently differentiable functions. We notice that 1 does
not appear in these equations or in the metric and so can merely be set equal to zero without loss of generality. The

metric can then be written as

ds® = 2dpdx + 2dgdy — 4ay™® (xdp +ydq)? - 4(yx +35y) dp? — 4Bydq* + B(Bx +vy) dp dq,

(4.16)

with o, 8,y and & given by one of the sets in Eqs. (4.15). In Sec. 2 the Killing algebra was determined for the

simplest members of each of these two families—a=qa,, f=0=y=06 and o =~ 6428°,

:-—iq'l, y=0=258. The

algebra for that member of Family II strongly suggests that it describes the heavenly version of Schwarzschild~NUT

space. (See also the next section.)

5. OTHER APPROACHES TO THE QUESTION OF
SOLUTIONS

1f one hopes that the heavenly (hellish) solutions of the
complex Einstein equations can be important as—in
some sense—basic and elementary “bricks” which,
through a procedure of synthesis (at present unknown),
would generate physical (real) solutions, it is of some
interest to reverse the question and to examine how
some known physical solutions generate related complex
solutions with only self-dual {or anti~self-dual) con-
formal curvature. Particularly useful for this purpose
are the real solutions of the Einstein—Maxwell equations
of type D presented by Plebafiski and Demiafiski. 2 We
briefly summarize here the relevant results and then in-
dicate how to determine the heavenly part. Let {p,q,T, o}
be real coordinates and m,n, €, g, be real constants
[interpreted as mass, NUT parameter (magnetic mass),
electric charge, and magnetic charge] and ¢ and y two
real constants related to the rotation and acceleration
parameters, while X is the cosmological constant. Then,
having the two polynomials

P=(=2/6+y =g +2np - ep* +2mp®
+ (= 2/6 =y e)pt,

Q= (=16~ +g,2) +2nq +eq* + 2mq®
+ (=26 +v+et)gt,

we write down the null tetrad for the space in question:

e! ._L 1 [<1+p2q2)”2
ez} TV b+gq P P
p 1/2

il(m) (do+q2df)],

(5.2)

&8 —_1_ 1 [(1+p2q2>1/2d
e4 "\/2— p+q Q q

() -],

+p°q

with metric
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ds? =2e'e? + 2¢%01, (5.3)
The corresponding electromagnetic field is given by

w=d (EO—:—;%’— {gdT + ipdo))

1-
, (5.4)
o=df& =¥ —i
w_d<1 ibg (qdt zpdc)).
The conformal curvature tensor has only
p-q

3
c®_2 (1-13%) [m +in— (et +g4% (

)]

{5.5)

= +q \* , -

as non-zero components.

1+

In the first step we formally extend this solution onto
a complex V, maintaining all formulas [Eqs. (5.1)—
(5.5)] as they are, but interpreting the coordinates and
parameters as complex. The formal Einstein—Maxwell
equations over complex V, are thus still fulfilled, giving
a solution of type DXD. In the second step we now con-
tract the space to a (weak) heavenly space of type
Dx[-] by just selecting

(5.6)

which guarantees C*’ =0 and w=0, Redefining y,=7v
+e,?, we then have a solution described only by five in-
dependent (complex) constants, m, e;, €, ¥, and A.
Setting a polynomial

D)= (= A/6 +vy) = Zimu — et® + 2mu® + (= 1/6 = v,

m—-in=0, ey—1igy=0,

(5.7a)
we now have

P=D@®), ¢ =4'Di/q),

where the tetrad is still given by the form of Egs. (5.2)
with, now, P and ¢ from Eq. (5.7) instead of (5.1).
The corresponding electromagnetic field can be written
as

(5.70)

1o_af__6__ ; -
zw__d<1_ipq (qd'r+zpdc)), %0, (5.8)
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which is, of course, purely heavenly and therefore does
not couple with the gravitational field (see Sec. 3).

It is clear that this complex solution can be con-
sidered as a complex prototype of the important real
solutions of the type D which contain in particular the
Kerr—Newman and Taub—NUT solutions, possibly gen-
eralized by the presence of magnetic charge, accelera-
tion parameter, and cosmological constant.

This solution is still very general. If one is interested
in the complex prototype of the Schwarzschild (Reis-
sner—Nordstrém) solution, he can try to make the ap-
propriate contraction of the above complex solution
(done for the real case in Ref. 12). It is much simpler,
though, to complexify the contracted real solution given
in Ref. 12. By imposing again the conditions

my—iny=0, ey—ig,=0 (5.9)
the metric and electromagnetic field become
dst=¥"1dg"” + (q'* +/ })(d6* + sin*0 d¢?)

- W(dt' - 2¢ ycos@ dp) (5.10)
U=1-2my/(qg" +7 4) = O/3) (@™ +5 ¢,
—inyE (o= (40/3) 4}
zw=—d{le,/(g" +i ¢)][dt" - i(g’ = i ¢;) cos del},
while the field invariants are

C(B):—41ﬂ0/(ql+i /0)3, %}2—93/(61'+i /0)4'

(5.11)

With A =0 this should be considered as the complex
prototype of the Schwarzschild (Reissner—Nordstrom)
and Taub—NUT solutions. With =g’ +my, 2,=0, we
may rewrite '3

ds2=(1—

Zmo) ( dr? 20002 4 a2 2
+
" - Zmﬁ/af)z +7°(d6° + sin“g do¢*)

— (dt’ + 2im, cos8 d)* ) ,
det(g,.,) = (1 = 2my/7)2r sin’8,

$w=—-d{(ey/r)dt’ - i(r - 2m,) cosbd o]} (5.12)

Although, when investigating strong heavens, it is in
general convenient to apply the formalism based on the
key function ©, in some subcases it is more efficient to
approach the problem more directly. An interesting
example of this is the following: the problem of deter-
mining all strong heavens of type NX [-].

To begin, we can assume a hellish gauge such that

Tig=0-—Ty=0=T4, I'p=TIy. (5.13)
Moreover, working with spaces of type NX[-], we can
fix the heavenly gauge so that only ¢V is different from
zero. Our choice for the null tetrad is, however, still
invariant with respect to two specific heavenly tetrad
gauges; these are given by (specialized to the gauge
choice we have already made)
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e =e%!, =%

o 2 1 —>
e’=e’', e=e’ 5.14)
r"42 = e°F42, F’12 = Fn + %do, I"31 = e'”l":“
c’(5):c,(4):c'(3):c/(2)=O, c/(i): e-ZOC(U
el=e!, e?=e'+Céd

C: —_
6'3 — 63, e/4 — 64 _ Cei
Ty =Tyg, T'p=T1p+Cly,
[’y =Ty +2CTy; + C'Ty, +dC (5.15)

C;(S):C,M):C;(S):C/(Z)zo’ Cl(l):c(l).

We may now start to integrate Cartan’s structure
equations:

del=—e' ATy~ e* ATy,
det=e! ATy +e* ATy,

de’ =" ATy~ ATy,
d(33=62 /\I"42 - 63/\ rlz,

(5.16)
dF42+2T42/\T‘12:0, dr12+r42/\r31:0,
. . (5.17)
dT, +2T, ATy =3Ce A el
We distinguish two cases:
S(special): Ty, =0; G(general): T'y,#0. (5.18)

Considering first case S, we see that dT';, =0 which im-
plies T',, =dp. But, choosing 0 =-p/2, we can (without
loss of generality) take

S P12:0:F42. (519)

Equations (5. 16) then imply that there exist functions p
and v such that e! =dp and - e =dy, and Egs. (5.17) then
require that C‘! is a function only of p and y, which we
choose so that C**' =F,,(y, p), which makes T'y,

=- 3F,(y,p)dp +dC. Now, we utilize C-gauge— Eqs.
(5.15)—to eliminate the dC term in I'y;. Finishing the
integration of Eqs. (5.16), we have

el=dp, -et=dg,
eQ:dx—%F@,/’)df)a
Ty=0=Ty, Ty=-:F,pp, CV=F,.

el =dy, (5. 20)

(This solution was already discussed in I, with x,q and
y,p interchanged, although it was not derived from such
basic notions there.)

Returning now to the general case, we see that we
can write I'yy =— ey # 0, while the exponential factor
may be regauged to 1 by using Egs. (5.14), giving

Ty =—dy#0. (5.21)

Equations (5.17) then imply that T'y; =— xdy and

—dx ANdy =3C'Ve® Ael#0, so that x and y can be con-
sidered as independent coordinates. Looking separately
at the two pairs in Eqs. (5.16), we obtain the existence
of functions f, g, u, and v such that

et =dv + fav, e* =du+gdy.
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Re-entering with these equations back into Egs. (5.16)—
for consistency—we find that

e3:dn—udy,

where £ and 1 are two new scalar functions. We easily
have that

2dx AdyNdu ANdv=-CPel A2 A S Ne'+0, (5.22)

61 :ds +Udy,

so that x,v,u,» may be chosen as independent co-
ordinates. Again from consistency with Egs. (5. 16) we
find that

d(f +x&) = tdx +2rdy,
which we interpret as defining two functions F(x,y)
= f+xE, Glx,y)=g— x7 and giving £, 2,7 and 4 in terms
of partial derivatives of F and G. We may then sum-
marize our resulis for this general case:

d(g - xn)=~ndx +udy, (5.23)

e'=dF, +vdy, e*=du+(G-xG)dy,

e =dy+ (F—xFdy, —é& =dG, +udy, (5.24)

C“) = Z[Gxx(ny +v) - -Fxx(ny +u)]-1’

where F and G are arbitrary except that not both F,,
and G,, may vanish. One may also observe that

& Nde =—- G dx Ndy Ndu,
(5. 25)
e' Ade' == Fdx Ndy N\ dv

so that these two quantities—F, and G,,—measure the
twists of the forms e' and ¢°, at least one of which must
be nonzero. We have then, in summary, that any solu-
tion of type NX[-] is represented either by Egs. (5.24)
or the special case given by Eq. (5. 20).

6. CONCLUSIONS

We consider this work as one more step toward a
better understanding of the structure of self-dual solu-
tions to the complex Einstein equations. It is to be
remembered that these self-dual solutions are thought
of as an intermediate step toward methods of generating
general solutions of Einstein’s equations on 2 real mani-
fold, even though the method by which they may be so
used is not clear at this moment. Yet we believe that the
full discussion of the permitted symmetries (generated
by Killing vectors) of these spaces given here should be
of considerable value striving toward this goal. In parti-
cular, the Killing algebras for certain type D x[—]
metrics, discussed in Secs. 2 and §, are very helpful in
identifying for which real metrics our complex solutions
are heavenly prototypes [even though explicit coordijnate
transformations which, for example, connect the metric
determined by the © in Eq. (2.40) and the metric given
in Eq. (5.12) have not yet been found]. Because of the
simplicity of the equation determining these Killing vec-
tors this process should be susceptible t¢ extension to
many other relevant uses.

We hope also that further studies can utilize the
heavenly spinorial (massless) fields of Sec. 3 to similar
good purposes. Lastly note that the yet newer approaches
to heavenly metrics, given in Sec. 5, yield complex
heavenly prototypes of all solutions of type NX[-] and
the most important solutions of type DXx[-].
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APPENDIX
Using the spinor relations
Casto=48428"3iCur  Co=Raur-iRgu, (A1)
Egs. (1.7) and (2. 2b), we have
- Cutp= 0w - Cuiit=9%,4
~ Citi = 00— Ouxe,1 + 000,

- Cips == Py, —Cpis =2(¢,1x + $,05) 9>

~Ciii =00, 14— Orry®,1 +Osyy .4, (A2)

—Cppy =@y, —Cois== 00, 1
- CZZH =P, 1~ exyy¢’.1 + eyyy¢,4v

~R/12:= ¢, 10 = b,05) ~ 20,10,: + 20,40 - (A3)

By trying to set C,585=0, the first triple of Eqs. (A2)
require that
¢:Bex+')/ﬁy + 66’

where §3;, yg, and §; are functions of p and ¢ only. In-
serting this information into the second triple, we find
that

(A4)

BeOy = ¥O, =P = éﬁex2 + %(')’gq - ng)xy (A5)

— Syt uexr vy g,

where ug, Vg, and kg are new functions of p and g only.
(This procedure is a simpler version of the integration
of triples of equations in See. 2.)

Using now the third triple of equations, we find that
there must be a function 7; and a constant 7, such that

Bg==Teat b, Ys=Tep+ M (A6)
and a function g; such that

pe=—(Og— bg)y, Ve= (05— ¢y, (A7)
and a new coastraint equation:
309~ ¢,9,+¢,,06,=P; ==~ %csaqx2+osqpxy (AB)

— 5060+ ppx Uy + Ky,
with gy, v, and x; again being functions of p and g only.
We are now ready to interpret Egs. (A4), (A5), and
(A8). First we consider the case where either 8, or ¥,
is different from zero. {(We assume that it is §;, at
least. ) In that case Eq. {AS) may be solved to obtain
9=Cs(¢,9,4)+(3’/33)Qg(x3y,f)y4), (AQ)

where G; is an arbitrary, sufficiently differentiable
function of three variables, @, is a second order poly-
nomial in x and y, constructed from P;. We may then
insert this information into Eq. (A8), which implies that

3pyGg — (po® + R/24)Gg, =S5, (A10)
where S; is a second order polynomial in ¢ and we have
inserted the value of the curvature scalar,

-~ R/24 = py(5; — PUG, = G0gg) + OppTeq = TeaTey (Al1)
calculated irom Eq. (A3), which is constant by the
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Bianchi identities. We therefore see that (3/2¢)'G =0.
However, Egs. (A9) say then that all fourth derivatives
of © with respect to x and y must vanish, and therefore
the space is flat (see I also).

The only nontrivial option is to retreat and make both
Bs and y, vanish. In this case ¢ =084, py=0, 7,=0=p,
=Vg=Kg, S0 that oy just reduces to ¢ and Eq. (A8) re-
mains, in the form

¢ﬁex + ¢qey =Py, {(A12)

where P, is still a second order polynomial in x and y.
Therefore, if either ¢, or ¢, is nonzero, we have that
(assuming ¢, # 0)

O =Gldex— ¢, b,0) + 0/ 0)R:(x,v,p,9), (A13)
@, being a second order polynomial in x and y. Dif-
ferentiating, we find that

LAl _ Jelg_ g \5=i

ZC —(¢q) ( ¢p) H) (A14)

H=(2/08)'G,, ®=¢x— ¢,

from which we see that the space must have originally
been of type Nx[~] (and also of course the transformed
space must be of this type as_well). Utilizing Eq. (Al1),
however, we easily see that R =0 so that the trans-
formation is simply between one strong heaven, V,, and
another, V,, without inducing a weak heaven—with éab
=0, R#0. The last possibility is that of constant ¢
which corresponds merely to a change of scale.

*On sabbatical leave from the University of New Mexico,
Albuquerque, New Mexico 87131,

t0On leave of absence from the University of Warsaw, Warsaw,
Poland.

13, F. Plebafiski, J. Math, Phys. 16, 2396 (1975).

3, Hacyan and J.F. Plebafiski, J. Math, Phys. 16, 2403
(1975).

3see, for example, E.T. Newman and A.I. Janis, J. Math.
Phys. 6, 915 (1965), and R. W, Lind and E. T. Newman, J.
Math. Phys. 15, 1103 (1974). More direct and thorough ap-
proaches to the problem can be seen in Ref. 1, as well as by
E.T. Newman, in a report to the 1974 Tel Aviv Conference
and a lecture at the Enrico Fermi Summer School of
Varenna, 1975, and by R. Penrose in the 1975 First Award
Winning Essay of the Gravity Research Foundation.

iWe use lower case Latin indices to denote tetrad indices
which run from 1 to 4, lower case Greek indices to denote
coordinate indices which also run from 1 to 4, and upper
case Latin indices (both undotted and dotted) to denote spinor
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indices which run from 1 to 2. We use a comma to indicate
ordinary (tetradial) differentiation and a semicolon to indi-
cate covariant differentiation. We also use a signature of +2
in the underlying real manifold. Our definition of duality is
so arranged that for an arbitrary p-form w=**w: if w
=(p!)'1w“1_"“’dx“1/\' + + Adx"p, then

*w= explEn/2)(pp’ — V(p1p’ 1)1} det(g, 1V 2eM--2,

1eaabp’
“’M-nlpdx By Ae o s AdxHpr

with p+p’=4.
5This, of course, merely generates some solutions, not all.
¢See, for instance, L.P. Eisenhart, Riemannian Geometry
(Princeton U.P,, Princeton, N.J., 1926), Chap. VI.

"We point out that if one considers two 6's, ©,=f,(x,%, ©,
=fylx, y)+Bx +7yy, then Eq. (2.2a) partially determines the
functions f; and f,:

Frcf1sy= Ui =00 fonogyy = V) == By =¥, —~ =1,

where we have taken advantage of the fact that since f, is in~
dependent of p and ¢ we must have J, +y, a constant (for any
solution to exist at all) which we may then renormalize to 1.
Looking casually at ©; and 6, we might say that if f; and f,
were equal they would generate the same metric. This is
surely true, but almost never can f; and f, be equal, as they
are solutions to two quite different differential equations.
See Sec. 4 for more details on these differential equations.
%The existence of this particular group of motions in this
space suggests that there is a coordinate transformation
which identifies it with the heavenly contraction of the real
manifold on which a GJ group [Petrov’s notation for the
group whose algebra is just given by Egs. (2. 39)] acts. See
A.Z. Petrov, Einsiein Spaces (Pergamon, New York, 1969},
p. 227.

*We are motivated to use the symbol H for these potentials
because they are actually “heavenly Hertz potentials for any
spin.

0We use [ to indicate the action of V4V, on a scalar field.
Also we note that the case s=1/2 corresponds to a “heavenly”
neutrino satisfying Weyl's equation in the heavenly space.
We have here quite simply $Ya=8,.H,0H=0.

YE, Goursat, A Course in Mathematical Analysis (Dover, New
York, 1964), Vol, III, Part I, p. 67.

125, F. Plebafiski and M. Demiafiski, Cal. Tech. Preprint
OAP-401, April, 1975. For a compact resumé see also

New York Acad, Sci. 262, 246 (1975); first announced in
J.F. Plebahski, in Gravitational Radiation and Gravitational
Collapse, edited by C. DeWitt-Morette {(Reidel, Holland,
1974), pp. 188—90. For the contraction to NUT solution see
J. F. Plebafiski, Ann. Phys. 90, 190 (1979).

3Note that the real Taub—NUT metric has determinant
(r+ig g)*(r — i} *sin’8. nonzero for real values of » and7,.
However, in a complex space there is a more serious prob-
lem at the (allowed) point »=147,= m,.

4Actually what one obtains from Eq. (5.17) is T, = — xdy +dC,
but again C-gauge—Egs. (5.15)-—allows us to regauge so as
to eliminate the dC term.

/
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Correspondence rules and path integrals*

Leon Cohen'

Department of Physics and Astronomy, The University of North Carolina, Chapel Hill, North Carolina 27514

(Received 13 November 1975)

Using the Weyl correspondence, Mizrahi has derived an expression for the transition amplitude as a path
integral in phase space. It is shown that the same result follows if any correspondence rule is used.

INTRODUCTION AND CONCLUSION

Mizrahi! has given an interesting derivation for the
transition amplitude expressed as a Feynman path
integral in phase space. Particular emphasis was placed
on the Weyl correspondence rule as the “royal road” in
the derivation. We show that all correspondence rules
lead to the same result.

There are an infinite number of correspondence rules
and no particular one is forced in the Schrddinger
formalism.? The fact that the Feynman path integral
formulation does not either has been previously
shown, =%

The set of all possible correspondence rules is given
by?

AP, Q= [[ 16,7 f(6,T)
xXexp(i0Q+ iTP)dodT, (1)
¥(8,T) :% Jf a(p,q)exp(—i8g - iTp)dg dp, (2)

where A(P,Q) is the quantum mechanical operator cor-
responding to the classical function a{q, p), and A6, 7}
is any function such that

A8,00=A0,7=1 {3)

For simplicity we have restricted ourselves to one
dimension.

Different correspondence rules are obtained by
selecting different choices for f. In particular the
Weyl, symmetrization, Born and Jordan rules are
obtained by taking f equal to 1, cos387% and sins 874/
(367%), respectively,

To follow closely the derivation of Mizrahi,
write (1} and (2} as

A®,Q=5z [ [ atp.a)aip

where

we re-

yq)dpdg, (4)

A(P,q):—zznffﬂe,‘f) expli0(Q - ¢)+iT(P —p)|d6dT

:——f[f(d 7) exp(3i07H — i6g ~ iTp)

X exp(i Q) exp(iTPYd8dT. (5}
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The matrix elements of A can readily be obtained,
" 1 " —_ !
<q’|A 7(1)“1 =5 f(e’q hq >

X exp[- i0{g - é(q”+q’))]eXP(i£(—q;i;q"~)> dae (6)

We now follow the steps analogous to Mizrahi’s after
his equation (35).

<Qj+1 7

1 _‘ti-_t'h
:<q”1 ﬁfeXp( 2(11 ﬁ,) (p,q))

><A(p,q>dpdq!qj>
! j f@, e )eXp[i9(q— H@;a g

exp(—i(t,yq - Ifl)H)

q;

“en
X exp {ﬁl l:ft]i-'ll_;;ll-p - h(P,lI)]
X(t, 4 — é)}dpdqd@ M

The transition amplitude is then

<qb’ tb | qa’ ta>

m dpdx db ( -g )
— d --.d F41
f R e AR

Xexp[le(X - %(wal + qj))]

X exp [}z (QL*IT‘-P h(p,x ))( s = L )]

i
dgy "> dg,dpy° " dpy, f(
o (2nR)™(2n)%n
Xexp[i 9(x - %(qj-bl + qj‘))]

Xexp [Eﬁ— 2 (ﬂ_f—‘_—% P; -h(pj,x))

s \ Ly —

Xty = tj)] dbdx. (8)
Passing to the limit we have

<4b9 tthwt >

= [ e, 0 exlivte - ()]
xexp (% [ btoutn - wpto,lar). ©

But, since f{#,0) equals 1, we have for the 9 integration
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S explib(x - ¢(1))]d6=276(x - q(2)). (10)
and hence (9) becomes
. | dpd
<qb! tb IQaa ta) = J Zz;_ﬁq
o
exo(§ [ 100 - p(0, a0t ). (11
ta
That all correspondence rules yield Eq. (11) is
analogous to the situation of obtaining a correspondence

rule from the Feynman path integral in configuration
space. It has been shown that no unique correspondence

ERRATA

is forced. The reasons given in Refs. 3—5 apply equally
well in the present case.
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Erratum: Statistical theory of effective electrical, thermal,
and magnetic properties of random heterogeneous materials.
VI. Comment on the notion of a cell material [J. Math.

Phys. 16, 1772 (1975)]

Motoo Hori

Department of Applied Physics, Tokyo Institute of Technology, Meguroku, Tokyo 152, Japan

(Received 7 November 1975)

Line 10 in the left column on p. 1772 should read as follows: “material is not. If his assertion is true, our

formula-,,.”,

Erratum: Semisimple Lie algebras [J. Math. Phys. 16,

2062 (1975)|

A. Pais and V. Rittenberg

Rockefeller University, New York, New York 10021
(Received 11 December 1975)

The root weight theorem page 2068 should read:

Root-weight theorem: To each weight @ corresponds a
root a such that ¢ =2« and
{Va, Vo}#0 (3.41)

or a,a’=0.

The last possibility was overlooked in the paper. If
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the Lie algebra is simple, however, then o;a*#0, and
all the conclusions derived from the root weight theorem

apply.

For further details see W, Nahm, V. Rittenberg,
and M. Scheunert, “Classification of simple graded Lie
algebras containing a reductive Lie algebra” {to be
published).
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